Sterols and sphingolipids are limited to eukaryotic cells, and their interaction has been proposed to favor formation of lipid microdomains. Although there is abundant biophysical evidence demonstrating their interaction in simple systems, convincing evidence is lacking to show that they function together in cells. Using lipid analysis by mass spectrometry and a genetic approach on mutants in sterol metabolism, we show that cells adjust their membrane composition in response to mutant sterol structures preferentially by changing their sphingolipid composition. Systematic combination of mutations in sterol biosynthesis with mutants in sphingolipid hydroxylation and head group turnover give a large number of synthetic and suppression phenotypes. Our unbiased approach provides compelling evidence that sterols and sphingolipids function together in cells. We were not able to correlate any cellular phenotype we measured with plasma membrane fluidity as measured using fluorescence anisotropy. This questions whether the increase in liquid order phases that can be induced by sterol-sphingolipid interactions plays an important role in cells. Our data revealing that cells have a mechanism to sense the quality of their membrane sterol composition has led us to suggest that proteins might recognize sterol-sphingolipid complexes and to hypothesize the coevolution of sterols and sphingolipids.
Tryptophan uptake appears to be the Achilles' heel in yeast physiology, since under a variety of seemingly diverse toxic conditions, it becomes the limiting factor for cell growth. When growing cells of Saccharomyces cerevisiae are subjected to high hydrostatic pressure, tryptophan uptake is down-regulated, leading to cell cycle arrest in the G 1 phase. Here we present evidence that the two tryptophan permeases Tat1 and Tat2 are differentially regulated by Rsp5 ubiquitin ligase in response to high hydrostatic pressure. Analysis of highpressure growth mutants revealed that the HPG1 gene was allelic to RSP5. The HPG1 mutation or the bul1⌬ bul2⌬ double mutation caused a marked increase in the steady-state level of Tat2 but not of Tat1, although both permeases were degraded at high pressure in an Rsp5-dependent manner. There were marked differences in subcellular localization. Tat1 localized predominantly in the plasma membrane, whereas Tat2 was abundant in the internal membranes. Moreover, Tat1 was associated with lipid rafts, whereas Tat2 localized in bulk lipids. Surprisingly, Tat2 became associated with lipid rafts upon the occurrence of a ubiquitination defect. These results suggest that ubiquitination is an important determinant of the localization and regulation of these tryptophan permeases. Determination of the activation volume (⌬V ) for Tat1-and Tat2-mediated tryptophan uptake (89.3 and 50.8 ml/mol, respectively) revealed that both permeases are highly sensitive to membrane perturbation and that Tat1 rather than Tat2 is likely to undergo a dramatic conformational change during tryptophan import. We suggest that hydrostatic pressure is a unique tool for elucidating the dynamics of integral membrane protein functions as well as for probing lipid microenvironments where they localize.
Hydrostatic pressure in the range of 15 to 25 MPa was found to cause arrest of the cell cycle in G 1 phase in an exponentially growing culture of Saccharomyces cerevisiae, whereas a pressure of 50 MPa did not. We found that a plasmid carrying the TAT2 gene, which encodes a high-affinity tryptophan permease, enabled the cells to grow under conditions of pressure in the range of 15 to 25 MPa. Additionally, cells expressing the Tat2 protein at high levels became endowed with the ability to grow under low-temperature conditions at 10 or 15°C as well as at high pressure. Hydrostatic pressure significantly inhibited tryptophan uptake into the cells, and the Tat2 protein level was down-regulated by high pressure. The activation volume associated with tryptophan uptake was found to be a large positive value, 46.2 ؎ 3.85 ml/mol, indicating that there was a net volume increase in a rate-limiting step in tryptophan import. The results showing cell cycle arrest in G 1 phase and down-regulation of the Tat2 protein seem to be similar to those observed upon treatment of cells with the immunosuppressive drug rapamycin. Although rapamycin treatment elicited the rapid dephosphorylation of Npr1 and induction of Gap1 expression, hydrostatic pressure did not affect the phosphorylation state of Npr1 and it decreased the level of Gap1 protein, suggesting that the pressure-sensing pathway may be independent of Npr1 function. Here we describe high-pressure sensing in yeast in comparison with the TOR-signaling pathway and discuss an important factor involved in adaptation of organisms to high-pressure environments.
Mutants of Saccharomyces cerevisiae defective in the late steps of ergosterol biosynthesis are viable but accumulate structurally altered sterols within the plasma membrane. Despite the significance of pleiotropic abnormalities in the erg mutants, little is known about how sterol alterations mechanically affect the membrane structure and correlate with individual mutant phenotypes. Here we demonstrate that the membrane order and occurrence of voids are determinants of membrane rigidity and hypersensitivity to a drug. Among five ergDelta mutants, the erg2Delta mutant exhibited the most marked sensitivity to cycloheximide. Notably, measurement of time-resolved anisotropy indicated that the erg2Delta mutation decreased the membrane order parameter (S), and dramatically increased the rotational diffusion coefficient (D(w)) of 1-[4-(trimethylamino)pheny]-6-phenyl-1,3,5-hexatriene (TMA-DPH) in the plasma membrane by 8-fold, providing evidence for the requirement of ergosterol for membrane integrity. The IC(50) of cycloheximide was closely correlated with S/D(w) in these strains, suggesting that the membrane disorder and increasing occurrence of voids within the plasma membrane synergistically enhance passive diffusion of cycloheximide across the membrane. Exogenous ergosterol partially restored the membrane properties in the upc2-1erg2Delta strain. In this study, we describe the ability of ergosterol to adjust the dynamic properties of the plasma membrane, and consider the relevance of drug permeability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.