This study presents a phase-field approach for an anisotropic continuum to model fracture of biological tissues and fiberreinforced composites. We start with the continuous formulation of the variational principle for the multi-field problem manifested through the deformation map and the crack phase-field at finite strains which leads to the Euler-Lagrange equations of the coupled problem. In particular, the coupled balance equations derived render the evolution of the anisotropic crack phase-field and the balance of linear momentum. In addition, we propose a novel energy-based anisotropic failure criterion which regulates the evolution of the crack phase-field. The coupled problem is solved using a one-pass operator-splitting algorithm composed of a mechanical predictor step and a crack evolution step. Representative numerical examples are devised for crack initiation and propagation in carbon-fiber-reinforced polymerg composites. Model parameters are obtained by fitting the set of novel experimental data to the predicted model response; the finite element results qualitatively capture the effect of anisotropy in stiffness and strength.
This study presents a crack phase-field approach for anisotropic continua to model, in particular, fracture of fiber-reinforced matrix composites. Starting with the variational formulation of the multi-field problem of fracture in terms of the deformation and the crack phase fields, the governing equations feature the evolution of the anisotropic crack phase-field and the balance of linear momentum, presented for finite and small strains. A recently proposed energy-based anisotropic failure criterion is incorporated into the model with a constitutive threshold function regulating the crack initiation in regard to the matrix and the fibers in a superposed framework. Representative numerical examples are shown for the crack initiation and propagation in unidirectional fiber-reinforced polymer composites under Mode-I, Mode-II and mixed-mode bending. Model parameters are obtained by fitting to sets of experimental data. The associated finite element results are able to capture anisotropic crack initiation and growth in unidirectional fiber-reinforced composite laminates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.