Roots are fundamentally important for growth and development, anchoring the plant to its growth substrate, facilitating water and nutrient uptake from the soil, and sensing and responding to environmental signals such as biotic and abiotic stresses. Understanding the molecular mechanisms controlling root architecture is essential for improving nutrient uptake efficiency and crop yields. In this review, we describe the progress being made in the identification of genes and regulatory pathways involved in the development of root systems in rice (Oryza sativa L.), including crown roots, lateral roots, root hairs, and root length. Genes involved in the adaptation of roots to the environmental nutrient status are reviewed, and strategies for further study and agricultural applications are discussed. The growth and development of rice roots are controlled by both genetic factors and environmental cues. Plant hormones, especially auxin and cytokinin, play important roles in root growth and development. Understanding the molecular mechanisms regulating root architecture and response to environmental signals can contribute to the genetic improvement of crop root systems, enhancing their adaptation to stressful environmental conditions.Electronic supplementary materialThe online version of this article (10.1186/s12284-018-0262-x) contains supplementary material, which is available to authorized users.
SET (Su(var), E(z), and Trithorax) domain-containing proteins play an important role in plant development and stress responses through modifying lysine methylation status of histone. Gossypium raimondii may be the putative contributor of the D-subgenome of economical crops allotetraploid G. hirsutum and G. barbadense and therefore can potentially provide resistance genes. In this study, we identified 52 SET domain-containing genes from G. raimondii genome. Based on conserved sequences, these genes are grouped into seven classes and are predicted to catalyze the methylation of different substrates: GrKMT1 for H3K9me, GrKMT2 and GrKMT7 for H3K4me, GrKMT3 for H3K36me, GrKMT6 for H3K27me, but GrRBCMT and GrS-ET for nonhistones substrate-specific methylation. Seven pairs of GrKMT and GrRBCMT homologous genes are found to be duplicated, possibly one originating from tandem duplication and five from a large scale or whole genome duplication event. The gene structure, domain organization and expression patterns analyses suggest that these genes’ functions are diversified. A few of GrKMTs and GrRBCMTs, especially for GrKMT1A;1a, GrKMT3;3 and GrKMT6B;1 were affected by high temperature (HT) stress, demonstrating dramatically changed expression patterns. The characterization of SET domain-containing genes in G. raimondii provides useful clues for further revealing epigenetic regulation under HT and function diversification during evolution.
Vascular tissues are very important for providing both mechanical strength and long‐distance transport. The molecular mechanisms of regulation of vascular tissue development are still not fully understood. In this study we identified ANAC005 as a membrane‐associated NAC family transcription factor that regulates vascular tissue development. Reporter gene assays showed that ANAC005 was expressed mainly in the vascular tissues. Increased expression of ANAC005 protein in transgenic Arabidopsis caused dwarf phenotype, reduced xylem differentiation, decreased lignin content, repression of a lignin biosynthetic gene and genes related to cambium and primary wall, but activation of genes related to the secondary wall. Expression of a dominant repressor fusion of ANAC005 had overall the opposite effects on vascular tissue differentiation and lignin synthetic gene expression. The ANAC005‐GFP fusion protein was localized at the plasma membrane, whereas deletion of the last 20 amino acids, which are mostly basic, caused its nuclear localization. These results indicate that ANAC005 is a cell membrane‐associated transcription factor that inhibits xylem tissue development in Arabidopsis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.