Grain refinement can make conventional metals several times stronger, but this comes at dramatic loss of ductility. Here we report a heterogeneous lamella structure in Ti produced by asymmetric rolling and partial recrystallization that can produce an unprecedented property combination: as strong as ultrafine-grained metal and at the same time as ductile as conventional coarse-grained metal. It also has higher strain hardening than coarse-grained Ti, which was hitherto believed impossible. The heterogeneous lamella structure is characterized with soft micrograined lamellae embedded in hard ultrafine-grained lamella matrix. The unusual high strength is obtained with the assistance of high back stress developed from heterogeneous yielding, whereas the high ductility is attributed to back-stress hardening and dislocation hardening. The process discovered here is amenable to large-scale industrial production at low cost, and might be applicable to other metal systems.back-stress hardening | heterogeneous lamella structure | ductility | strength | strain partitioning S trong or ductile? For centuries engineers have been forced to choose one of them, not both as they would like to. This is because a material is either strong or ductile but rarely both at the same time. High strength is always desirable, especially under the current challenge of energy crisis and global warming, where stronger materials can help by making transportation vehicles lighter to improve their energy efficiency. However, good ductility is also required to prevent catastrophic failure during service.Grain refinement has been extensively explored to strengthen metals. Ultrafine-grained (UFG) and nanostructured metals can be many times stronger than their conventional coarse-grained (CG) counterparts (1-5), but low ductility is a roadblock to their practical applications. The low ductility is primarily due to their low strain hardening (6-12), which is caused by their small grain sizes. To further exacerbate the problem, their high strengths require UFG metals to have even higher strain hardening than weaker CG metals to maintain the same ductility according to the Considère criterion. This makes it appear hopeless for UFG materials to have high ductility and it has been taken for granted that they are super strong but inevitably much less ductile than their CG counterparts. Microstructure of Heterogeneous Lamella StructureHere we report that a previously unidentified heterogeneous lamella (HL) structure possesses both the UFG strength and the CG ductility, which to our knowledge has never been realized before. The HL structure was produced by asymmetric rolling (13, 14) and subsequent partial recrystallization (see Materials and Methods for details). The asymmetric rolling elongated the initial equiaxed grains (Fig. 1A) into a lamella structure (Fig. 1B), which is heterogeneous with some areas having finer lamella spacing than others. This was due to the variation of slip systems and plastic strain in grains with different initial orientation ...
Gradient structures have evolved over millions of years through natural selection and optimization in many biological systems such as bones and plant stems, where the structures change gradually from the surface to interior. The advantage of gradient structures is their maximization of physical and mechanical performance while minimizing material cost. Here we report that the gradient structure in engineering materials such as metals renders a unique extra strain hardening, which leads to high ductility. The grain-size gradient under uniaxial tension induces a macroscopic strain gradient and converts the applied uniaxial stress to multiaxial stresses due to the evolution of incompatible deformation along the gradient depth. Thereby the accumulation and interaction of dislocations are promoted, resulting in an extra strain hardening and an obvious strain hardening rate up-turn. Such extraordinary strain hardening, which is inherent to gradient structures and does not exist in homogeneous materials, provides a hitherto unknown strategy to develop strong and ductile materials by architecting heterogeneous nanostructures.gradient structured metal | nanocrystalline metal M ankind has much to learn from nature on how to make engineering materials with novel and superior physical and mechanical properties (1, 2). For examples, the clay-polymer multilayers mimicking naturally grown seashells are found to have exceptional mechanical properties (3). Another example is the gradient structure, which exists in many biological systems such as teeth and bamboos. A typical gradient structure exhibits a systematic change in microstructure along the depth on a macroscopic scale. Gradient structures have been evolved and optimized over millions of years to make the biological systems strong and tough to survive nature. They are greatly superior to manmade engineering materials with homogeneous microstructures.Here we report the discovery of a hitherto unknown, to our knowledge, strain hardening mechanism, which is intrinsic to the gradient structure in an engineering material. The gradient structure shows a surprising extra strain hardening along with an up-turn and subsequent good retention of strain hardening rate. Strain hardening is critical for increasing the material ductility (4-6). We also show a superior ductility-strength combination in the gradient structure that is not accessible to conventional homogeneous microstructures. Microstructural Characterization of Gradient StructureWe demonstrate these behaviors in a grain-size gradient-structured (GS) sample, i.e., two GS surface layers sandwiching a coarse-grained (CG) core, produced by the surface mechanical attrition treatment (SMAT) (7) in a 1-mm-thick CG interstitial free (IF)-steel sheet (SI Materials and Methods). The GS layers on both sides have a gradual grain-size increase along the depth (Fig. 1A). In the outermost layer of ∼25-μm thickness are nearly equiaxial nanograins with a mean size of 96 nm (Fig. 1B). The grain size increases gradually to 0.5 and 1 μm at ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.