Fe2+/Cr3+ doped LTO/MWCNT composites were made by combining doping, compositing and particle-size reduction, and exhibit improved electrochemical performances.
Although nanosizing Li4Ti5O12 (LTO) materials is an effective way to improve their rate performances, their low tap density and first cycle coulombic efficiency limit their practical applications. To tackle these problems while preserving the advanced rate performances, monodispersed mesoporous LTO submicrospheres are developed here. These submicrospheres are synthesized via a solvothermal method using TiO2 submicrospheres and LiOH as precursors followed by a mild calcinations. The roles of the solvent used in the solvothermal process and calcination temperature are systematically investigated and optimized. The LTO submicrospheres fabricated by the solvothermal process using a water-ethanol (60 vol%) solvent followed by a calcination process at 600 °C reveal a large sphere size of 660 ± 30 nm with a small primary particle size of 20-100 nm, a large specific surface area of 15.5 m(2) g(-1), an appropriate pore size of 4.5 nm and an ultra-high tap density of 1.62 g cm(-3). Furthermore, they show high crystallinity and no blockage of Li(+) ion transportation pathways. Due to the novel morphology and ideal crystal structure, these submicrospheres exhibit outstanding electrochemical performances. They display a high first cycle coulombic efficiency of 93.5% and a high charge capacity of 179 mA h g(-1) at 0.5 C between 1.0 and 2.5 V (vs. Li/Li(+)), surpassing the theoretical capacity of LTO. Their charge capacity at 10 C is as high as 109 mA h g(-1) with a capacity retention of 97.8% over 100 cycles. Therefore, this LTO material can be a superior and practical candidate for the anodes of high-power lithium-ion batteries.
Monodisperse spherical Mn 0.75 Ni 0.25 (OH) 2 precursors built up from plate-like primary particles have been successfully synthesized by the control of pH values during a co-precipitation reaction. The size of spherical particles, namely the secondary particles, is observed to decrease with increasing pH value from 9.0 to 11.0, and is accompanied by a series of shape changes of the primary particles from closepacked plates to well-exposed nanoplates, and then to nanoparticles. Further lithiation of these hydroxide precursors produces the final lithium-rich layered Li 1.2 Mn 0.6 Ni 0.2 O 2 cathode materials without destroying the morphology of the precursors. Electrochemical measurements show that the spherical cathode material assembled from well-exposed nanoplates exhibits superior rate capability and good cyclability compared to other electrode materials, which can be attributed to its uniform particle size and the favorable shape which facilitates the diffusion of lithium ions. Through the control of the sample morphologies, we provide a simple and effective way to enhance the lithium storage capability of lithium-rich layered oxide cathode materials for high-performance lithium-ion batteries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.