La(Fe, Si)13-based compounds are well-known magnetocaloric materials, which show a pronounced negative thermal expansion (NTE) around the Curie temperature but have not been considered as NTE materials for industrial applications. The NaZn13-type LaFe13-xSix and LaFe11.5-xCoxSi1.5 compounds were synthesized, and their linear NTE properties were investigated. By optimizing the chemical composition, the sharp volume change in La(Fe, Si)13-based compounds was successfully modified into continuous expansion. By increasing the amount of Co dopant in LaFe11.5-xCoxSi1.5, the NTE shifts toward a higher temperature region, and also the NTE operation-temperature window becomes broader. Typically, the linear NTE coefficient identified in the LaFe10.5Co1.0Si1.5 compound reaches as much as -26.1 × 10(-6) K(-1), with an operation-temperature window of 110 K from 240 to 350 K, which includes room temperature. Such control of the specific composition and the NTE properties of La(Fe, Si)13-based compounds suggests their potential application as NTE materials.
It has been confirmed that diabetes mellitus (DM) carries increased oxidative stress. This study evaluated the effects of salidroside from Rhodiolae Radix on diabetes-induced oxidative stress in mice. After induction of diabetes, diabetic mice were administered daily doses of 50, 100 and 200 mg/kg salidroside for 28 days. Body weights, fasting blood glucose (FBG), serum insulin, TC (total cholesterol), TG (triglyceride), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) were measured. Results showed that salidroside possessed hypoglycemic activity and protective effects against diabetes-induced oxidative stress, which could significantly reduce FBG, TC, TG and MDA levels, and at same time increase serum insulin levels, SOD, GPx and CAT activities. Therefore, salidroside should be considered as a candidate for future studies on diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.