Given the high prevalence of diabetes and pre-diabetes worldwide and the consistency of the scientific evidence reviewed, the expert panel confirmed an urgent need to communicate information on GI and GL to the general public and health professionals, through channels such as national dietary guidelines, food composition tables and food labels.
We studied the effect of increasing the frequency of meals on serum lipid concentrations and carbohydrate tolerance in normal subjects. Seven men were assigned in random order to two metabolically identical diets. One diet consisted of 17 snacks per day (the nibbling diet), and the other of three meals per day (the three-meal diet); each diet was followed for two weeks. As compared with the three-meal diet, the nibbling diet reduced fasting serum concentrations of total cholesterol, low-density lipoprotein cholesterol, and apolipoprotein B by a mean (+/- SE) of 8.5 +/- 2.5 percent (P less than 0.02), 13.5 +/- 3.4 percent (P less than 0.01), and 15.1 +/- 5.7 percent (P less than 0.05), respectively. Although the mean blood glucose level and serum concentrations of free fatty acids, 3-hydroxybutyrate, and triglyceride were similar during both diets, during the nibbling diet the mean serum insulin level decreased by 27.9 +/- 6.3 percent (P less than 0.01) and the mean 24-hour urinary C-peptide output decreased by 20.2 +/- 5.6 percent (P less than 0.02). In addition, the mean 24-hour urinary cortisol excretion was lower by 17.3 +/- 5.9 percent (P less than 0.05) at the end of the nibbling diet than at the end of the three-meal diet. The blood glucose, serum insulin, and C-peptide responses to a standardized breakfast and the results of an intravenous glucose-tolerance test conducted at the end of each diet were similar. We conclude that in addition to the amount and type of food eaten, the frequency of meals may be an important determinant of fasting serum lipid levels, possibly in relation to changes in insulin secretion.
Tea is a complex mixture containing a range of compounds from simple phenolics to complex thearubigins, many of which have well-recognized antioxidant properties. This paper describes the application of high-performance liquid chromatography-mass spectrometry (HPLC-MS(n)) methods for the rapid and routine analysis of more than 30 phenolics in tea. Green and black tea infusions were injected directly onto a reversed phase HPLC column, and the phenolics eluted using two different mobile phase gradients, one optimized to resolve catechin derivatives and the other, flavonols and theaflavins. Compounds, identified on the basis of their retention time, absorbance spectrum, and MS fragmentation pattern, included (+)-catechin, (-)-epicatechin, theaflavin and their various gallate derivatives, quercetin and kaempferol mono-, di-, and triglycosides, quinic acid esters of gallic acid and hydroxycinnamates, and the purine alkaloids, caffeine and theobromine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.