With the developing technology, the automotive lighting sector is also changing rapidly. Automotive lighting equipment is produced with more functionality and higher performance. However, with the increase in perfor-mance, undesirable heat generation also increases. Automotive headlights fail or perform poorly when exposed to high heat; therefore, unwanted heat has to be removed. This is accomplished with heat sinks. In this study, four different automotive light-emitting diode (LED) headlights have been designed as channelless, 4-channel, 8-channel, and 12-channel. The designed models were tested numerically at different LED powers (8, 10, 12, 14, and 16W). Thus, the impact of heat sink fin structures on the thermal performance of automotive LED headlights was investigated numerically. The heat dissipation performances of the designs were analyzed using the computational fluid dynamics software SolidWorks Flow Simulation. The simulation results showed that the designed products can be used as LED headlights. As the applied heat power increased, maximum tem-peratures also increased. While a continuous increase in performance was achieved in designs up to 8-channel, slight performance degradation was observed when the number of channels reached 12. As the applied heat power increased, the average temperatures increase whereas thermal resistance (Rth) decreased. From channel-less design to 12-channel design, Rth values decreased from 6.8 °C/W to 5.31 °C/W.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.