The coronavirus pandemic, which emerged at the end of 2019, continues to be effective. Although various vaccines have been developed, the diagnosis of the disease and the 14-day isolation method still remain valid. Purpose: To classify diseases such as COVID-19, tuberculosis, other pneumonias, and lung opacity. For this goal, it was aimed to automate disease diagnosis, which was done manually by expert radiologists with chest X-Ray images, with a hybrid model created with the four most commonly used convolutional neural networks. In addition, it is aimed to reach a more accurate result by combining four CNN models instead of one model during the epidemic when diagnosis is of critical importance. Method: In the binary classification, the images were categorised as COVID-19positive and negative, and multi-class classification was conducted according to labels including Lung Opacity, COVID-19, Normal, and Viral Pneumonia. The recommended model consisted of MobileNetV2, DenseNet121, InceptionResNetV2, and Xception networks. Transfer learning was used for initial weights. These models, were combined with ensemble learning to obtain better classification performance. Results: The best binary classification result was obtained from the MobileNetv2 with an accuracy rate of 98.84%. The hybrid model improved slightly, with a value 0.16. In the multi-class classification, the DenseNet121 accomplished the highest classification rate, with 93.17%. The hybrid model improvement in the multi-class classification was 0.81. According to these results, the proposed method will alleviate the burden of health personnel during the epidemic. It will also aid in the diagnosis of COVID-19 in areas where facilities are limited.
Solunum sistemine etki eden ve ileri vakalarda ölüme neden olan korona virüs salgını yaklaşık iki yıldır devam etmektedir. Her ülkenin salgın ile mücadele yöntemi farklı olmasına rağmen ortak izlenen metot ise hastalığın tespiti ve izolasyonudur. Tespit ve izolasyon için en kritik adım ise COVID-19 tanısının doğru ve hızlı konulmasıdır. Akciğer X-Ray görüntülerinde virüse özgü bulgulara rastlanılması, bu verilerin hastalık teşhisinde kullanılabileceğini göstermektedir. İlgili çalışmanın amacı, makine öğrenmesi yöntemleri ile COVID-19 ve diğer akciğer hastalıklarına ait X-Ray görüntülerini işleyerek çoklu sınıflandırma yapmaktır. Bu sayede kriz anında tanı koyma ve izolasyon için yardım alınacak alanında uzman olmayan personele mobil cihazlar vasıtasıyla karar aşamasında destek sağlanması hedeflenmektedir. Bu amaçla: COVID-19, Normal, Akciğer Opasitesi, Diğer Pnömoni etiketlerine ait 11,293 X-Ray görüntüsünden oluşan veri seti MobileNetV2, NASNetMobile, Xception ve DenseNet121 CNN ağları kullanılarak sınıflandırılmış ve sonuçlar karşılaştırılmıştır. En başarılı sonuçlar DenseNet121 ve MobileNet ağları ile elde edilmiş olup sırası ile %92,16 ve %91,78 doğruluk oranıyla sınıflandırma gerçekleştirilmiştir.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.