Neural relation extraction discovers semantic relations between entities from unstructured text using deep learning methods. In this study, we make a clear categorization of the existing relation extraction methods in terms of data expressiveness and data supervision, and present a comprehensive and comparative review. We describe the evaluation methodologies and the datasets used for model assessment. We explicitly state the common challenges in relation extraction task and point out the potential of the pre-trained models to solve them. Accordingly, we investigate additional research directions and improvement ideas in this field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.