Although the field of automatic speaker or speech recognition has been extensively studied over the past decades, the lack of robustness has remained a major challenge. The missing data technique (MDT) is a promising approach. However, its performance depends on the correlation across frequency bands. This paper presents a new reconstruction method for feature enhancement based on the trait. In this paper, the degree of concentration across frequency bands is measured with principal component analysis (PCA). Through theoretical analysis and experimental results, it is found that the correlation of the feature vector extracted from the sub-band (SB) is much stronger than the ones extracted from the full-band (FB). Thus, rather than dealing with the spectral features as a whole, this paper splits full-band into sub-bands and then individually reconstructs spectral features extracted from each SB based on MDT. At the end, those constructed features from all sub-bands will be recombined to yield the conventional mel-frequency cepstral coefficient (MFCC) for recognition experiments. The 2-sub-band reconstruction approach is evaluated in speaker recognition system. The results show that the proposed approach outperforms full-band reconstruction in terms of recognition performance in all noise conditions. Finally, we particularly discuss the optimal selection of frequency division ways for the recognition task. When FB is divided into much more sub-bands, some of the correlations across frequency channels are lost. Consequently, efficient division ways need to be investigated to perform further recognition performance.
Much attention has been paid on Multi-language or cross-language speech recognition domain. A kind of speech recognition system with one language and different accents is also an application in the above domain. In this paper, a new concept called language vector is proposed and then is applied in the learning of acoustic model in deep neural network. The proposed method introduces language vector by conditional learning and multi-task learning and dramatically improves the performance of the English speech recognition system aimed at British accent and Chinglish accent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.