Our previous long noncoding RNA (lncRNA) microarray revealed that lncRNA‐TCONS_00026907 is aberrantly expressed between cervical cancer tissues and adjacent tissues. This study aims to explore the potential role of TCONS_00026907 in the development of cervical cancer. The expression levels of TCONS_00026907 in cervical cancer tissues and adjacent tissues from 83 patients of cervical cancer were detected by quantitative real‐time polymerase chain reaction and the survival rate was analyzed. In vitro, HeLa and SiHa cells were transfected with small hairpin RNA (shRNA)‐TCONS_00026907, then cell proliferation, cycle distribution, apoptosis, migration and invasion were measured. To confirm TCONS_00026907 regulates expression of ELK1 through inhibiting miR‐143‐5p, overexpression of miR‐143‐5p and silencing of ELK1 were, respectively, performed in HeLa and SiHa cells. Results showed that TCONS_00026907 level was significantly higher in cervical cancer tissues compared to noncancerous tissues and the survival rate was lower in the high expression group. Silencing of TCONS_00026907, overexpression of miR‐143‐5p and silencing of ELK1 inhibited cervical cell cycle, proliferation, migration, and invasion, but promoted apoptosis, respectively. Furthermore, silencing of TCONS_00026907 suppressed the growth of cervical tumors and altered the expression of ELK1, p‐ELK1, C‐fos, Cyclin D1 and Bcl‐2 in vivo. Our study identifies TCONS_00026907 as a potent proto‐oncogene and indicates that TCONS_00026907/miR143‐5p/ELK1 regulatory pathway plays an important role in cervical cancer.
Background The methods routinely used to detect trichomonads in the lungs are not sensitive enough, and an effective method is urgently needed. Method Primers were first designed to match the conserved area of the 18S rRNA gene of trichomonads. Then, nested PCR was carried out to detect trichomonads in bronchoalveolar lavage fluid (BALF). Finally, all positive specimens were subjected to DNA sequencing and phylogenetic analysis. Results Among 115 bronchoalveolar lavage fluid samples, ten samples tested positive in nested PCR (10/115), while no samples were positive in wet mount microscopy (0/115) ( P < 0.01). Among the ten positive specimens, two were identified as Tetratrichomonas spp. and the other eight as Trichomonas tenax in phylogenetic analysis. Conclusions Nested PCR is an effective way to detect trichomonads in bronchoalveolar lavage fluid.
To validate its efficacy in the context of the human immune system, a novel therapeutic vaccine of hGM-CSF/hTNFα surface-modified PC-3 cells against human prostate cancer was evaluated in the human peripheral blood lymphocytes-severe combined immunodeficiency (huPBL-SCID) chimeric mouse model. The hGM-CSF or/and hTNFα modified vaccines inhibited prostate cancer growth effectively so as to prolong the mouse survival significantly. The splenocytes from the hGM-CSF/hTNFα vaccine-inoculated mice showed the strongest tumor-specific cytotoxicity against PC-3 cells and the highest production of IFNɤ. These features indicated that type 1 protective immune response was induced efficiently against human prostate cancer and further enhanced through synergetic adjuvant effects of hGM-CSF and hTNFα.Electronic supplementary materialThe online version of this article (doi:10.1186/s13045-015-0175-8) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.