Accurately mapping individual tree species in densely forested environments is crucial to forest inventory. When considering only RGB images, this is a challenging task for many automatic photogrammetry processes. The main reason for that is the spectral similarity between species in RGB scenes, which can be a hindrance for most automatic methods. State-of-the-art deep learning methods could be capable of identifying tree species with an attractive cost, accuracy, and computational load in RGB images. This paper presents a deep learning-based approach to detect an important multi-use species of palm trees (Mauritia flexuosa; i.e., Buriti) on aerial RGB imagery. In South-America, this palm tree is essential for many indigenous and local communities because of its characteristics. The species is also a valuable indicator of water resources, which comes as a benefit for mapping its location. The method is based on a Convolutional Neural Network (CNN) to identify and geolocate singular tree species in a high-complexity forest environment, and considers the likelihood of every pixel in the image to be recognized as a possible tree by implementing a confidence map feature extraction. This study compares the performance of the proposed method against state-of-the-art object detection networks. For this, images from a dataset composed of 1,394 airborne scenes, where 5,334 palm-trees were manually labeled, were used. The results returned a mean absolute error (MAE) of 0.75 trees and an F1-measure of 86.9%. These results are better than both Faster R-CNN and RetinaNet considering equal experiment conditions. The proposed network provided fast solutions to detect the palm trees, with a delivered image detection of 0.073 seconds and a standard deviation of 0.002 using the GPU. In conclusion, the method presented is efficient to deal with a high-density forest scenario and can accurately map the location of single species like the M flexuosa palm tree and may be useful for future frameworks.
A strategy to reduce qualitative and quantitative losses in crop-yields refers to early and accurate detection of insect-damage caused in plants. Remote sensing systems like hyperspectral proximal sensors are a promising strategy for managing crops. In this aspect, machine learning predictions associated with clustering techniques may be an interesting approach mainly because of its robustness to evaluate high dimensional data. In this paper, we model the spectral response of insect-herbivory-damage in maize plants and propose an approach based on machine learning and a clustering method to predict whether the plant is herbivore-attacked or not using leaf reflectance measurements. We differentiate insect-type damage based on the spectral response and indicate the most contributive wavelengths to perform it. For this, we used a maize experiment in semi-field conditions. The maize plants were submitted to three different treatments: control (health plants); plants submitted to Spodoptera frugiperda herbivory-damage, and; plants submitted to Dichelops melacanthus herbivory-damage. The leaf spectral response of all plants (controlled and submitted to herbivory) was measured with a FieldSpec 3.0 Spectroradiometer from 350 to 2500 nm for eight consecutive days. We evaluated the performance of different learners like random forest (RF), support vector machine (SVM), extreme gradient boost (XGB), neural networks (MLP), and measured the impact of a day-by-day analysis into the prediction. We proposed a novel framework with a ranking strategy, based on the accuracy returned by predictions, and a clusterization method based on a self-organizing map (SOM) to identify important regions in the reflectance measurement. Our results indicated that the RF-based framework algorithm is the overall best learner to deal with this type of data. After the 5th day of analysis, the accuracy of the algorithm improved substantially. It separated the three treatments into different groups with an F-measure equal to 0.967, 0.917, and 0.881, respectively. We also verified that the most contributive spectral regions are situated in the near-infrared domain. We conclude that the proposed approach with machine learning methods is adequate to monitor herbivory-damage of S. frugiperda and stink bugs like Dichelops melacanthus in maize, differentiating the types of insect-attack early on. We also demonstrate that the framework proposed for the analysis of the most contributive wavelengths is suitable to highlight spectral regions of interest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.