Objective: Adipose tissue is closely associated with angiogenesis, but the mechanisms are not fully understood. Some of the adipocyte-derived cytokines are hypothesized to play an important role in angiogenesis. We evaluated tube formation of human umbilical vascular endothelial cells (HUVECs) cultured in type I collagen gel when overlaid with the supernatant of 3T3-L1 cell culture, and expression of tube-forming factor(s) in 3T3-L1 cells with or without pioglitazone. We also studied plasma growth factor levels in patients with type 2 diabetes mellitus treated with pioglitazone. Results and methods: The supernatant of 3T3-L1 cells increased tube formation of HUVECs by 9.03-fold of control. Reverse transcription-polymerase chain reaction showed that hepatocyte growth factor (HGF) and vascular endothelial growth factor (VEGF) mRNA were expressed in 3T3-L1 cells. Western blot analysis also demonstrated HGF and VEGF protein expression. When 3T3-L1 cells were treated with 100 nM small interfering RNAs (siRNAs) for HGF, the HGF mRNA and protein were suppressed. The VEGF mRNA and protein in the cells were also suppressed by siRNA for VEGF. The supernatant of 3T3-L1 cells treated with HGF siRNA suppressed tube formation of HUVECs by 61% compared with the supernatant of cells treated with control siRNA. Addition of VEGF siRNA resulted in no significant changes. The supernatant conditioned with pioglitazone further promoted the tube formation. Pioglitazone enhanced HGF mRNA expression in 3T3-L1 cells. After 12 weeks of pioglitazone treatment, the changes of plasma HGF levels in patients treated with pioglitazone were significantly higher than those in control. Conclusion: These results suggest that HGF secreted from 3T3-L1 cells may be the major factor regulating the tube formation, and agents that enhance the differentiation of adipocytes may promote tube formation of HUVECs mediated by HGF secreted by adipocytes.
IntroductionNerve growth factor (NGF) has an important role in the generation of discogenic pain. We hypothesized that annular rupture is a trigger for discogenic pain through the action of NGF. In this study, the protein levels of NGF in discs from patients with disc herniation were examined and compared with those from discs of patients with other lumbar degenerative disc diseases.MethodsPatients (n = 55) with lumbar degenerative disc disease treated by surgery were included. Nucleus pulposus tissue (or herniated disc tissue) was surgically removed and homogenized; protein levels were quantified using an enzyme-linked immunosorbent assay (ELISA) for NGF. Levels of NGF in the discs were compared between 1) patients with herniated discs (herniated group) and those with other lumbar degenerative disc diseases (non-herniated group), and 2) low-grade and high-grade degenerated discs. Patient’s symptoms were assessed using a visual analog scale (VAS) and the Oswestry disability index (ODI); the influence of NGF levels on pre- and post-operative symptoms was examined.ResultsMean levels of NGF in discs of patients were significantly higher in herniated discs (83.4 pg/mg total protein) than those in non-herniated discs (68.4 pg/mg).No significant differences in levels of NGF were found between low-grade and high-grade degenerated discs. Multivariate analysis, adjusted for age and sex, also showed significant correlation between the presence of disc herniation and NGF levels, though no significant correlation was found between disc degeneration and NGF levels. In both herniated and non-herniated groups, pre-operative symptoms were not related to NGF levels. In the herniated group, post-operative lower extremity pain and low back pain (LBP) in motion were greater in patients with low levels of NGF; no significant differences were found in the non-herniated group.ConclusionsThis study reports that NGF increased in herniated discs, and may play an important role in the generation of discogenic pain. Analysis of patient symptoms revealed that pre-operative NGF levels were related to post-operative residual lower extremity pain and LBP in motion. The results suggest that NGF in the disc is related to pain generation, however, the impact of NGF on generation of LBP varies in individual patients.Electronic supplementary materialThe online version of this article (doi:10.1186/ar4674) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.