Hypoxia is a hallmark of progressive cancer. Hypoxic cancer cells trigger glycolysis in response to a decreased O2 supply to meet metabolic and bioenergetic demands. Meanwhile, these responses to hypoxia and alterations of the microenvironment promote cancer cell metastasis by increasing transcription of hypoxia-inducible factor (HIF)-regulated genes. However, the detailed mechanism by which hypoxia regulates cancer cell metastasis and glycolysis remains to be investigated. In the present study, we identified that metadherin (MTDH), a multifaceted oncogene, is involved in the regulation of head and neck squamous cell carcinoma (HNSCC) metastasis and invasion under hypoxic conditions. Furthermore, the study indicated that there is a positive feedback loop between HIF-1α and MTDH in HNSCC cells, and that hypoxia promotes HNSCC cell metastasis and epithelial-mesenchymal transition by mediating the HIF-1α-MTDH loop. These findings implicate HIF-1α-MTDH as a promising target for anticancer drugs in solid tumors, and help to explain the pro-tumorigenic and unfavorable effect of MTDH on HNSCC observed in our previous studies.
Derlin-1 is over-expressed to function as an oncoprotein in breast, lung and colon cancers. However, the implications of Derlin-1 involved in squamous cell carcinoma of the head and neck (SCCHN) remain unknown. This study aims to investigate the effects of Derlin-1 expression on SCCHN tissues and cells. The potential mechanism of Derlin-1 regulating SCCHN cell proliferation, apoptosis and metastasis was also indicated in this work. Western blot and immunohistochemistry (IHC) assays showed that Derlin-1 was over-expressed in 114 SCCHN samples and five SCCHN cell lines. We found that the expression of Derlin-1 was positively associated with lymph node metastasis, clinical stage and recurrence in our SCCHN patients' samples. Survival analysis indicated that high expression of Derlin-1 was significantly associated with shorter overall survival (OS) and disease-free survival (DFS). Knock down expression of Derlin-1 in SCCHN cell lines was found to inhibit cell proliferation, metastasis and promote cell apoptosis. Further experiments showed that signals of PI3K/Akt, p53 and Smad2/3 may involve in these processes. In all, Derlin-1 might be a novel prognostic marker of SCCHN patients and plays an oncogenic role in SCCHN cell progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.