Nutrient additions to intensive agricultural systems range from inadequate to excessive—and both extremes have substantial human and environmental costs.
China and other rapidly developing economies face the dual challenge of substantially increasing yields of cereal grains while at the same time reducing the very substantial environmental impacts of intensive agriculture. We used a model-driven integrated soil-crop system management approach to develop a maize production system that achieved mean maize yields of 13.0 t ha −1 on 66 on-farm experimental plots-nearly twice the yield of current farmers' practices-with no increase in N fertilizer use. Such integrated soil-crop system management systems represent a priority for agricultural research and implementation, especially in rapidly growing economies.environmental integrity | nutrient use efficiency | crop yield | nitrogen fertilization | smallholder farm
SummaryDespite increasing evidence that plant diversity in experimental systems may enhance ecosystem productivity, the mechanisms causing this overyielding remain debated. Here, we review studies of overyielding observed in agricultural intercropping systems, and show that a potentially important mechanism underlying such facilitation is the ability of some crop species to chemically mobilize otherwise-unavailable forms of one or more limiting soil nutrients such as phosphorus (P) and micronutrients (iron (Fe), zinc (Zn) and manganese (Mn)). Phosphorus-mobilizing crop species improve P nutrition for themselves and neighboring non-P-mobilizing species by releasing acid phosphatases, protons and/or carboxylates into the rhizosphere which increases the concentration of soluble inorganic P in soil. Similarly, on calcareous soils with a very low availability of Fe and Zn, Fe-and Zn-mobilizing species, such as graminaceous monocotyledonous and cluster-rooted species, benefit themselves, and also reduce Fe or Zn deficiency in neighboring species, by releasing chelating substances. Based on this review, we hypothesize that mobilization-based facilitative interactions may be an unsuspected, but potentially important mechanism enhancing productivity in both natural ecosystems and biodiversity experiments. We discuss cases in which nutrient mobilization might be occurring in natural ecosystems, and suggest that the nutrient mobilization hypothesis merits formal testing in natural ecosystems.
Global food production crucially depends on phosphorus (P). In agricultural and urban landscapes much P is anthropogenic, entering through trade. Here we present a long-term, largescale analysis of the dynamics of P entering and leaving soils and aquatic systems via a combination of trade, fluvial transport, and waste transport. We then report net annual P inputs,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.