Uniform scanning with a relatively large beam size can improve beam utilization efficiency more than conventional irradiation methods using scatterers and can achieve a large-field, long-range and large spread-out Bragg peak (SOBP). The SOBP is obtained by energy stacking in uniform scanning, but its disadvantage is that the number of stacking layers is large, especially in the low-energy region, because the Bragg peak of the pristine beam is very sharp. We applied a mini-ridge filter to broaden the pristine Bragg peak up to a stacked layer thickness of 1 or 2 cm in order to decrease the number of stacking layers. The number of stacking layers can be reduced to 20% or less than that in the case of pristine beam stacking. Although the distal falloff of the SOBP is deteriorated by applying the mini-ridge filter, we can improve the distal falloff to that of pristine beam stacking by introducing the distal filter to the irradiation of the most distal layer. Uniform scanning in combination with mini-ridge filter use can more than double the beam utilization efficiency over that of passive irradiation techniques.
A compact tunable monochromatic (1 to 10 percent bandwidth rms) hard X-ray source based on laser-electron collisions for medicine is proposed. An X-band linac is introduced to realize a remarkably compact system. We have designed a compact monochromatic tunable hard X-ray source as a demonstration. An X-band (11.424 GHz) linac for the purpose is being manufactured. Numerical considerations using CAIN code and luminosity calculations have been performed to estimate the X-ray yield. An X-band thermionic-cathode RF gun and an RDS (round detuned structure) X-band accelerating structure are applied to generate a 50 MeV electron beam with 20 pC/micro-bunch, 1 µs macro-pulse. The total X-ray yield by laser-electron collision with the electron beam and Q-switch Nd:YAG laser with a pulse intensity of 2 J/10 ns is 107 photons/RF-pulse (108 photons/s in 10 pps). We will adapt the technique of laser pulse circulating to increase the X-ray yield up to 108 photons/pulse (109 photons/s). Twenty eight percent of the photons with an energy spread of 10% rms are expected to be available by collimating the scattering angles of X-ray photons.
SUMMARY
This research aims to develop a compact synchrotron dedicated for proton beam therapy using a scanning irradiation method. The effective length and magnetic uniformity of the bending magnets in the synchrotron were analyzed by 3D static magnetic field calculations. The calculation results indicate that the shape of the bending magnet satisfies the specification for beam stability. A push–pull multifeed‐driven technique allows shortening the length of the FINEMET RF acceleration cavity for the synchrotron from 600 mm to 450 mm. The circumference of the synchrotron is 18 m, which is the world's most compact size for proton beam therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.