A home-auxiliary robot platform is developed in the current study which could assist patients with physical disabilities and older persons with mobility impairments. The robot, mainly controlled by brain computer interface (BCI) technology, can not only perform actions in a person’s field of vision, but also work outside the field of vision. The wavelet decomposition (WD) is used in this study to extract the δ (0~4 Hz) and θ (4~8 Hz) sub-bands of subjects’ electroencephalogram (EEG) signals. The correlation between pairs of 14 EEG channels is determined with synchronization likelihood (SL), and the brain network structure is generated. Then, the motion characteristics are analyzed using the brain network parameters clustering coefficient (C) and global efficiency (G). Meanwhile, the eye movement characteristics in the F3 and F4 channels are identified. Finally, the motion characteristics identified by brain networks and eye movement characteristics can be used to control the home-auxiliary robot platform. The experimental result shows that the accuracy rate of left and right motion recognition using this method is more than 93%. Additionally, the similarity between that autonomous return path and the real path of the home-auxiliary robot reaches up to 0.89.
This study describes the detection of driving fatigue using the characteristics of brain networks in a real driving environment.
Rapid and accurate detection of driver fatigue is of great significance to improve traffic safety. In the present work, we propose the man-machine response mode (MRM) to relieve driver fatigue caused by long-term driving. In this paper, the characteristics of the complex brain network, which can effectively reflect brain activity information, were used to detect the change of driving fatigue over time. Combined with the traditional eye movement characteristics and a subjective questionnaire (SQ), the changes in driving fatigue characteristics were comprehensively analyzed. The results show that driving fatigue can be effectively delayed using the MRM. Additionally, the response equipment is low in cost and practical, so it will be practical to use in actual driving situations in the future.
The accurate detection and alleviation of driving fatigue are of great significance to traffic safety. In this study, we tried to apply the modified multi-scale entropy (MMSE) approach, based on variational mode decomposition (VMD), to driving fatigue detection. Firstly, the VMD was used to decompose EEG into multiple intrinsic mode functions (IMFs), then the best IMFs and scale factors were selected using the least square method (LSM). Finally, the MMSE features were extracted. Compared with the traditional sample entropy (SampEn), the VMD-MMSE method can identify the characteristics of driving fatigue more effectively. The VMD-MMSE characteristics combined with a subjective questionnaire (SQ) were used to analyze the change trends of driving fatigue under two driving modes: normal driving mode and interesting auditory stimulation mode. The results show that the interesting auditory stimulation method adopted in this paper can effectively relieve driving fatigue. In addition, the interesting auditory stimulation method, which simply involves playing interesting auditory information on the vehicle-mounted player, can effectively relieve driving fatigue. Compared with traditional driving fatigue-relieving methods, such as sleeping and drinking coffee, this interesting auditory stimulation method can relieve fatigue in real-time when the driver is driving normally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.