Reservoir computing systems utilize dynamic reservoirs having short-term memory to project features from the temporal inputs into a high-dimensional feature space. A readout function layer can then effectively analyze the projected features for tasks, such as classification and time-series analysis. The system can efficiently compute complex and temporal data with low-training cost, since only the readout function needs to be trained. Here we experimentally implement a reservoir computing system using a dynamic memristor array. We show that the internal ionic dynamic processes of memristors allow the memristor-based reservoir to directly process information in the temporal domain, and demonstrate that even a small hardware system with only 88 memristors can already be used for tasks, such as handwritten digit recognition. The system is also used to experimentally solve a second-order nonlinear task, and can successfully predict the expected output without knowing the form of the original dynamic transfer function.
Sparse representation of information provides a powerful means to perform feature extraction on high-dimensional data and is of broad interest for applications in signal processing, computer vision, object recognition and neurobiology. Sparse coding is also believed to be a key mechanism by which biological neural systems can efficiently process a large amount of complex sensory data while consuming very little power. Here, we report the experimental implementation of sparse coding algorithms in a bio-inspired approach using a 32 × 32 crossbar array of analog memristors. This network enables efficient implementation of pattern matching and lateral neuron inhibition and allows input data to be sparsely encoded using neuron activities and stored dictionary elements. Different dictionary sets can be trained and stored in the same system, depending on the nature of the input signals. Using the sparse coding algorithm, we also perform natural image processing based on a learned dictionary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.