Highlights d Aging leads to the most profound changes in brain gene expression networks d Immune module led by Alzheimer's risk genes Trem2/Tyrobp is upregulated with aging d Alzheimer's risk allele APOE4 increases the expression of Serpina3 family genes d Alzheimer's protective allele APOE2 drives unique serum metabolome profiles
The apolipoprotein E (APOE) ε4 allele is the strongest genetic risk factor for late-onset Alzheimer’s disease mainly by driving amyloid-β pathology. Recently, APOE4 has also been found to be a genetic risk factor for Lewy body dementia (LBD), which includes dementia with Lewy bodies and Parkinson’s disease dementia. How APOE4 drives risk of LBD and whether it has a direct effect on α-synuclein pathology are not clear. Here, we generated a mouse model of synucleinopathy using an adeno-associated virus gene delivery of α-synuclein in human APOE-targeted replacement mice expressing APOE2, APOE3, or APOE4. We found that APOE4, but not APOE2 or APOE3, increased α-synuclein pathology, impaired behavioral performances, worsened neuronal and synaptic loss, and increased astrogliosis at 9 months of age. Transcriptomic profiling in APOE4-expressing α-synuclein mice highlighted altered lipid and energy metabolism and synapse-related pathways. We also observed an effect of APOE4 on α-synuclein pathology in human postmortem brains with LBD and minimal amyloid pathology. Our data demonstrate a pathogenic role of APOE4 in exacerbating α-synuclein pathology independent of amyloid, providing mechanistic insights into how APOE4 increases the risk of LBD.
Accumulating evidence has demonstrated that microRNAs (miRNAs) play critical roles in cancer initiation and development by functioning either as oncogenes or as tumor suppressors. The role of microRNA-449a (miR-449a) in endometrial cancer remains unclear. We examined the levels of miR-449a and miR-449b in benign endometrium, type I and type II endometrial cancer tissues by quantitative real-time polymerase chain reaction. To further investigate the roles of miR-449a in regulating the behavior of endometrial cancer cells, we overexpressed miR-449a in the endometrial cancer cell line HEC-1B, which had low endogenous miR-449a expression. We analyzed the effects of miR-449a overexpression on CDC25 expression, proliferation, invasion and apoptosis of HEC-1B cells. We found that miR-449a and miR-449b levels were markedly reduced in type II endometrial cancer tissues but not in type I endometrial cancer tissues compared with normal endometrium. Overexpression of miR-449a significantly inhibited the proliferation, invasion and clonogenic survival of HEC-1B cells. MiR-449a overexpression also induced apoptosis in HEC-1B cells. In addition, real-time RT-PCR and western blot analysis showed that CDC25A expression was suppressed by miR-449a overexpression. Our results suggest that miR-449a may act as a tumor suppressor by targeting CDC25A in endometrial cancer.
APOE4 is a strong genetic risk factor for Alzheimer’s disease and Dementia with Lewy bodies; however, how its expression impacts pathogenic pathways in a human-relevant system is not clear. Here using human iPSC-derived cerebral organoid models, we find that APOE deletion increases α-synuclein (αSyn) accumulation accompanied with synaptic loss, reduction of GBA levels, lipid droplet accumulation and dysregulation of intracellular organelles. These phenotypes are partially rescued by exogenous apoE2 and apoE3, but not apoE4. Lipidomics analysis detects the increased fatty acid utilization and cholesterol ester accumulation in apoE-deficient cerebral organoids. Furthermore, APOE4 cerebral organoids have increased αSyn accumulation compared to those with APOE3. Carrying APOE4 also increases apoE association with Lewy bodies in postmortem brains from patients with Lewy body disease. Our findings reveal the predominant role of apoE in lipid metabolism and αSyn pathology in iPSC-derived cerebral organoids, providing mechanistic insights into how APOE4 drives the risk for synucleinopathies.
Approximately half of Alzheimer’s disease (AD) brains have concomitant Lewy pathology at autopsy, suggesting that α-synuclein (α-SYN) aggregation is a regulated event in the pathogenesis of AD. Genome-wide association studies revealed that the ε4 allele of the apolipoprotein E (APOE4) gene, the strongest genetic risk factor for AD, is also the most replicated genetic risk factor for Lewy body dementia (LBD), signifying an important role of APOE4 in both amyloid-β (Aβ) and α-SYN pathogenesis. How APOE4 modulates α-SYN aggregation in AD is unclear. In this study, we aimed to determine how α-SYN is associated with AD-related pathology and how APOE4 impacts α-SYN seeding and toxicity. We measured α-SYN levels and their association with other established AD-related markers in brain samples from autopsy-confirmed AD patients (N = 469), where 54% had concomitant LB pathology (AD + LB). We found significant correlations between the levels of α-SYN and those of Aβ40, Aβ42, tau and APOE, particularly in insoluble fractions of AD + LB. Using a real-time quaking-induced conversion (RT-QuIC) assay, we measured the seeding activity of soluble α-SYN and found that α-SYN seeding was exacerbated by APOE4 in the AD cohort, as well as a small cohort of autopsy-confirmed LBD brains with minimal Alzheimer type pathology. We further fractionated the soluble AD brain lysates by size exclusion chromatography (SEC) ran on fast protein liquid chromatography (FPLC) and identified the α-SYN species (~ 96 kDa) that showed the strongest seeding activity. Finally, using human induced pluripotent stem cell (iPSC)-derived neurons, we showed that amplified α-SYN aggregates from AD + LB brain of patients with APOE4 were highly toxic to neurons, whereas the same amount of α-SYN monomer was not toxic. Our findings suggest that the presence of LB pathology correlates with AD-related pathologies and that APOE4 exacerbates α-SYN seeding activity and neurotoxicity, providing mechanistic insight into how APOE4 affects α-SYN pathogenesis in AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.