Curcumin possesses strong anti-inflammatory, anti-rheumatoid and anti-oxidative activities, and has the potential to inhibit nuclear factor-κB (NF-κB) signaling. Cartilage damage in osteoarthritis (OA) is largely mediated by interleukin-1β (IL-1β) via activation of various transcription factors, including NF-κB and activator protein-1. The aim of the present study was to determine whether IL-1β induces matrix metalloproteinase-13 (MMP-13) expression and inhibits type II collagen expression, as well as to examine whether cell proliferation may be inhibited by curcumin through the inhibition of NF-κB signaling. The effects of curcumin were investigated in rat articular chondrocyte cell cultures treated with IL-1β in the presence or absence of curcumin or the NF-κB inhibitor pyrrolidine dithiocarbamate. Western blotting and reverse transcription-quantitative polymerase chain reaction were conducted to evaluate protein and mRNA expression levels of type II collagen, MMP-13, NF-κB inhibitor α (IκBα), phosphorylated-IκBα and NF-κB subunit p65/RelA. Western blotting and immunofluorescence were performed to examine the effects of curcumin on the expression, phosphorylation and nuclear translocation of NF-κB-associated proteins. The effects of curcumin on cell proliferation were evaluated by Cell Counting Kit-8 (CCK-8). Curcumin was demonstrated to inhibit the IL-1β-induced activation of NF-κB by suppressing IκBα phosphorylation and p65/RelA nuclear translocation. These events were associated with the downregulation of MMP-13 expression and the upregulation of type II collagen expression, both of which are considered to be NF-κB targets. CCK-8 assays revealed that co-treatment with curcumin resulted in increased proliferation in IL-1β-treated chondrocytes. These findings implicated curcumin as a naturally occurring anti-inflammatory agent for the treatment of OA via inhibition of NF-κB signaling.
We demonstrate gain-switched fiber laser with bias pumping plays an important role in regulating chaotic relaxation spikes. Under certain conditions the profile of output pulse from gain-switched fiber laser can keep the same shape as that of pump pulse. Bias pumping technique may have significance in increasing output stable pulse energy in gain-switched fiber laser. Gain-switched fiber laser with bias pumping may be interesting for some applications in micro-processing and thin film removal.
We report on a diode-pumped passively mode-locked Yb:Lu(1.5)Y(1.5)Al(5)O(12) (Yb:LuYAG) laser for the first time to our knowledge. With the mixed crystal of Yb:LuYAG as gain medium, the mode-locked laser generated 2.2 W of average output power with a repetition rate of 83.9 MHz and pulse duration of 2.4 ps at the wavelength of 1030 nm. In order to obtain higher output power, the output from the mode-locked oscillator was further amplified to 8.5 W by two-stage single-pass amplifiers. The high-power picosecond laser is very useful for applications such as pumping of midinfrared optical parametric oscillators, material microprocessing, and UV light generation.
Dissipative solitons have been realized in mode-locked fiber lasers in the theoretical framework of the Ginzburg-Landau equation and have significantly improved the pulse energy and peak power levels of such lasers. It is interesting to explore whether dissipative solitons exist in optical parametric oscillators in the framework of three-wave coupling equations in order to substantially increase the performance of optical parametric oscillators. Here, we demonstrate a temporal-filtering dissipative soliton in a synchronously pumped optical parametric oscillator. The temporal gain filtering of the pump pulse combined with strong cascading nonlinearity and dispersion in the optical
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.