Measured load data play a crucial role in the fatigue durability analysis of mechanical structures. However, in the process of signal acquisition, time domain load signals are easily contaminated by noise. In this paper, a signal denoising method based on variational mode decomposition (VMD), wavelet threshold denoising (WTD), and singular spectrum analysis (SSA) is proposed. Firstly, a simple criterion based on mutual information entropy (MIE) is designed to select the proper mode number for VMD. Detrended fluctuation analysis (DFA) is adopted to obtain the noise level of the noisy signal, which can optimize the selection of MIE threshold. Meanwhile, the noisy signal is adaptively decomposed into band-limited intrinsic mode functions (BLIMFs) by using VMD. In addition, weighted-permutation entropy (WPE) is applied to divide the BLIMFs into signal-dominant BLIMFs and noise-dominant BLIMFs. Then, the signal-dominant BLIMFs are reconstructed with the noise-dominant BLIMFs processed by WTD. Finally, SSA is implemented for the reconstructed signal. Experimental results of synthetic signals demonstrate that the presented method outperforms the conventional digital signal denoising methods and the related methods proposed recently. Effectiveness of the proposed method is verified through experiments of the measured load signals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.