Summary
Sleep is a behavior conserved from invertebrates to vertebrates, and tightly regulated in a homeostatic manner. The molecular and cellular mechanism determining the amount of rapid eye movement sleep (REMS) and non-REMS (NREMS) remains unknown. Here we identified two dominant mutations affecting sleep/wakefulness through an electroencephalogram/electromyogram-based screening of randomly mutagenized mice. A splicing mutation of the Sik3 protein kinase gene causes a profound decrease in total wake time, due to an increase in inherent sleep need. Sleep deprivation affects regulatory-site phosphorylation of the kinase. Sik3 orthologues regulate sleep also in fruit flies and roundworms. A missense mutation of the leak cation channel NALCN reduces the total amount and episode duration of REMS, apparently by increasing the excitability of REMS-inhibiting neurons. Our results substantiate the utility of forward genetic approach for sleep behaviors in mice, demonstrating the role of SIK3 and NALCN in regulating the amount of NREMS and REMS, respectively.
Although sleep is one of the most conserved behaviors, the intracellular mechanism regulating sleep/wakefulness remains unknown. We recently identified a protein kinase, SIK3, as a sleep-regulating molecule. Mice that lack a well-conserved protein kinase A (PKA) phosphorylation site, S551, showed longer non-rapid eye movement (NREM) sleep and increased NREMS delta density. S551 of SIK3 is conserved in other members of the SIK family, such as SIK1 (S577) and SIK2 (S587). Here, we examined whether the PKA phosphorylation sites of SIK1 and SIK2 are involved in sleep regulation by generating Sik1S577A and Sik2S587A mice. The homozygous Sik1S577A mice showed a shorter wake time, longer NREMS time, and higher NREMS delta density than the wild-type mice. The heterozygous and homozygous Sik2S587A mice showed increased NREMS delta density. Both the Sik1S577A and Sik2S587A mice exhibited proper homeostatic regulation of sleep need after sleep deprivation. Despite abundant expression of Sik1 in the suprachiasmatic nucleus, the Sik1S577A mice showed normal circadian behavior. Although Sik2 is highly expressed in brown adipose tissue, the male and female Sik2S587A mice that were fed either a chow or high-fat diet showed similar weight gain as the wild-type littermates. These results suggest that PKA-SIK signaling is involved in the regulation of sleep need.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.