Ammonium recovery from wastewater by gas-permeable membranes is promising but suffers from the tradeoff between membrane stability and permeability under harsh operating conditions. Chemical-resistant membranes display modest permeability due to the poor solubility and processibility; chemically active membranes are easier to be endowed with better permeability however hinder by instability. To resolve such a problem, we cleverly design a novel membrane configuration via one-step solution-electrospinning, with the chemical-active component (low-strength fluorine polymer) as the inner skeleton to construct interconnected porous structures and the chemical-resistant component (high-strength fluorine polymer) as the outer armor to serve as a protective layer. Due to the significantly enhanced mass transfer coefficient, the interconnected-porous armor-structured membrane exhibited much higher permeability for NH4 +-N recovery, which was 1.4 and 5 times that of the traditional PTFE membrane and PP membrane, respectively. Through long-term intermittent and consecutive experiments, the reusability and durability of the armor-structured nanofibrous membrane were verified. When treating actual hoggery wastewater with complicated water quality, the armor-structured nanofibrous membrane also displayed robust stable performance with excellent antiwettability. The mechanisms of membrane formation, corrosion resistance, and mass transfer were discussed in detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.