International audienceThis paper presents a novel content-based method for transferring the colour patterns between images. Unlike previous methods that rely on image colour statistics, our method puts an emphasis on high-level scene content analysis. We first automatically extract the foreground subject areas and background scene layout from the scene. The semantic correspondences of the regions between source and target images are established. In the second step, the source image is re-coloured in a novel optimization framework, which incorporates the extracted content information and the spatial distributions of the target colour styles. A new progressive transfer scheme is proposed to integrate the advantages of both global and local transfer algorithms, as well as avoid the over-segmentation artefact in the result. Experiments how that with a better understanding of the scene contents, our method well preserves the spatial layout, the colour distribution and the visual coherence in the transfer process. As an interesting extension, our method can also be used to re-colour video clips with spatially-varied colour effects
window --> split(y){~0.3:glass | 0.08:frame | ~1.22:A} A --> split(x){~0.75:B | ~0.15:glass} B --> repeat(x){~0.25:C} C --> split(x){~0.2:glass | 0.05:frame} Figure 1:We present an algorithm that automatically derives a split grammar for a given facade layout. A facade layout is given as a segmented facade image (left and top middle). A short subset of the generated output grammar describing a window is shown in the bottom middle. Grammars can be edited and combined to generate new stochastic split grammars. On the right we show a high-rise building that was created by such a stochastic variation. AbstractIn this paper, we address the following research problem: How can we generate a meaningful split grammar that explains a given facade layout? To evaluate if a grammar is meaningful, we propose a cost function based on the description length and minimize this cost using an approximate dynamic programming framework. Our evaluation indicates that our framework extracts meaningful split grammars that are competitive with those of expert users, while some users and all competing automatic solutions are less successful.
Electric vehicle sharing provides an effective way to improve the traffic situation and relieve environmental pressure. The government subsidy policy and the car-sharing operator’s pricing strategy are the key factors that affect the large-scale application of electric vehicle sharing. To address this issue, a subsidy and pricing model for electric vehicle sharing based on the two-stage Stackelberg game is proposed in this paper according to the current situation in China. First, an electric vehicle sharing operation mode under government participation is constructed. Then, a two-stage Stackelberg game model involving the government, the car-sharing operator and the consumers is proposed to determine the subsidy rates and pricing strategies. The improved particle swarm optimization algorithm is used to obtain the Nash equilibrium of the model. Also, the influence of private car cost and shared travel comfort on subsidy rates and pricing strategies is analyzed. Finally, the simulation of electric vehicle sharing in a town of China is carried out to investigate the performance of the proposed subsidy and price model. The simulation results show that the model rationally formulates subsidy policies and pricing strategies of the electric vehicle sharing to balance the interests of the three participants, mobilizing users’ enthusiasm while guaranteeing the benefits of the government and operator, making the overall benefit optimal.
Real-world images usually contain vivid contents and rich textural details, which will complicate the manipulation on them. In this paper, we design a new framework based on exampled-based texture synthesis to enhance content-aware image retargeting. By detecting the textural regions in an image, the textural image content can be synthesized rather than simply distorted or cropped. This method enables the manipulation of textural & non-textural regions with different strategies since they have different natures. We propose to retarget the textural regions by example-based synthesis and non-textural regions by fast multi-operator. To achieve practical retargeting applications for general images, we develop an automatic and fast texture detection method that can detect multiple disjoint textural regions. We adjust the saliency of the image according to the features of the textural regions. To validate the proposed method, comparisons with state-of-the-art image retargeting techniques and a user study were conducted. Convincing visual results are shown to demonstrate the effectiveness of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.