Fenofibrate (FF) protects against diabetic nephropathy (DN) in type 1 diabetic (T1D) mice by upregulating the expression of fibroblast growth factor 21 (FGF21), leading to the activation of the Akt-mediated Nrf2 antioxidant pathways. Here, we examined which isoforms of Akt contribute to FF activation of FGF21-mediated renal protection by examining the phosphorylation and expression of three isoforms, Akt1, Akt2, and Akt3. T1D induced by a single intraperitoneal dose of streptozotocin (STZ) resulted in reduced phosphorylation of one isoform, Akt2, but FF treatment increased renal Akt2 phosphorylation in these and normal mice, suggesting a potential and specific role for renal Akt2 in FF protection against T1D. This was further confirmed using in vitro cultured HK-2 human kidney tubule cells exposed to high glucose (HG) with siRNA silencing of the Akt2 gene and STZ-induced diabetic Akt2-knockout mice with and without 3-month FF treatment. In normal HK-2 cells exposed to HG for 24 hours, FF completely prevented cell death, reduced total Akt expression and glycogen synthase kinase (GSK)-3β phosphorylation, increased nuclear accumulation of Fyn, and reduced nuclear Nrf2 levels. These positive effects of FF were partially abolished by silencing Akt2 expression. Similarly, FF abolished T1D-induced renal oxidative stress, inflammation, and renal dysfunction in wild-type mice, but was only partially effective in Akt2-KO mice. Furthermore, FF treatment stimulated phosphorylation of AMPKα, an important lipid metabolism mediator, which in parallel with Akt2 plays an important role in FF protection against HG-induced HK-2 cells oxidative stress and damage. These results suggest that FF protects against DN through FGF21 to activate both Akt2/GSK-3β/Fyn/Nrf2 antioxidants and the AMPK pathway. Therefore, FF could be repurposed for the prevention of DN in T1D patients.Key words: diabetic nephropathy; Akt2, fibroblast growth factor 21; nuclear factor erythroid 2-related factor 2; peroxisome proliferator-activated receptor α agonist.
Endothelial dysfunction contributes to diabetic macrovascular complications, resulting in high mortality. Recent findings demonstrate a pathogenic role of P53 in endothelial dysfunction, encouraging the investigation of the effect of P53 inhibition on diabetic endothelial dysfunction. Thus, high glucose (HG)‐treated endothelial cells (ECs) were subjected to pifithrin‐α (PFT‐α)—a specific inhibitor of P53, or
P53
‐small interfering RNA (siRNA), both of which attenuated the HG‐induced endothelial inflammation and oxidative stress. Moreover, inhibition of P53 by PFT‐α or
P53
‐siRNA prohibited P53 acetylation, decreased microRNA‐34a (miR‐34a) level, leading to a dramatic increase in sirtuin 1 (SIRT1) protein level. Interestingly, the miR‐34a inhibitor (miR‐34a‐I) and PFT‐α increased SIRT1 protein level and alleviated the HG‐induced endothelial inflammation and oxidative stress to a similar extent; however, these effects of PFT‐α were completely abrogated by the miR‐34a mimic. In addition, SIRT1 inhibition by EX‐527 or
Sirt1
‐siRNA completely abolished miR‐34a‐I's protection against HG‐induced endothelial inflammation and oxidative stress. Furthermore, in the aortas of streptozotocin‐induced diabetic mice, both PFT‐α and miR‐34a‐I rescued the inflammation, oxidative stress and endothelial dysfunction caused by hyperglycaemia. Hence, the present study has uncovered a P53/miR‐34a/SIRT1 pathway that leads to endothelial dysfunction, suggesting that P53/miR‐34a inhibition could be a viable strategy in the management of diabetic macrovascular diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.