The maintenance of normal body weight is disrupted in patients with anorexia nervosa (AN) for prolonged periods of time. Prior to the onset of AN, premorbid body mass index (BMI) spans the entire range from underweight to obese. After recovery, patients have reduced rates of overweight and obesity. As such, loci involved in body weight regulation may also be relevant for AN and vice versa. Our primary analysis comprised a cross-trait analysis of the 1000 single nucleotide polymorphisms (SNPs) with the lowest p-values in a genome-wide association meta-analysis (GWAMA) of AN (GCAN) for evidence of association in the largest published GWAMA for BMI (GIANT). Subsequently we performed sex-stratified analyses for these 1000 SNPs. Functional ex vivo studies on four genes ensued. Lastly, a look-up of GWAMA-derived BMI related loci was performed in the AN GWAMA. We detected significant associations (p-values < 5×10−5, Bonferroni corrected p < 0.05) for 9 SNP alleles at 3 independent loci. Interestingly, all AN susceptibility alleles were consistently associated with increased BMI. None of the genes (chr. 10: CTBP2, chr. 19: CCNE1, chr. 2: CARF and NBEAL1; the latter is a region with high linkage disequilibrium) nearest to these SNPs has previously been associated with AN or obesity. Sex-stratified analyses revealed that the strongest BMI signal originated predominantly from females (chr. 10 rs1561589; poverall: 2.47 × 10−06/pfemales: 3.45 × 10−07/pmales: 0.043). Functional ex vivo studies in mice revealed reduced hypothalamic expression of Ctbp2 and Nbeal1 after fasting. Hypothalamic expression of Ctbp2 was increased in diet induced obese (DIO) mice as compared to age-matched lean controls. We observed no evidence for associations for the look-up of BMI related loci in the AN GWAMA. A cross-trait analysis of AN and BMI loci revealed variants at three chromosomal loci with potential joint impact. The chromosome 10 locus is particularly promising given that the association with obesity was primarily driven by females. In addition, the detected altered hypothalamic expression patterns of Ctbp2 and Nbeal1 as a result of fasting and DIO implicate these genes in weight regulation.
Background: Age and comorbidities increase COVID-19 related in-hospital mortality risk, but the extent by which comorbidities mediate the impact of age remains unknown. Methods: In this multicenter retrospective cohort study of 45 Dutch hospitals, 4,806 proven COVID-19 patients hospitalized in Dutch hospitals (between February and July 2020) from the CAPACITY-COVID registry were included (age 69 [58-77] years, 64% men). The primary outcome was defined as a combination of in-hospital mortality or discharge with palliative care. Logistic regression analysis was performed to analyze the associations between sex, age, and comorbidities with in-hospital mortality. The effect of comorbidities on the relation of age with in-hospital mortality was evaluated using mediation analysis.Results: In-hospital COVID-19 related mortality occurred in 1,108 (23%) patients, 836 (76%) were aged ≥70 years (70+). Both age 70+ and female sex were univariably associated with outcome (odds ratio [OR]4.68, 95%confidence interval [4.02-5.45], OR0.68[0.59-0.79], respectively; both p<0.001). All comorbidities were univariably associated with outcome (p<0.001), and all but dyslipidemia remained significant after adjustment for age70+ and sex. The impact of comorbidities was attenuated after age-spline adjustment, only leaving female sex, diabetes mellitus (DM), chronic kidney disease (CKD), and chronic pulmonary obstructive disease (COPD) significantly associated (female OR0.65[0.55-0.75], DM OR1.47[1.26-1.72], CKD OR1.61[1.32-1.97], COPD OR1.30[1.07-1.59]). Pre-existing comorbidities in older patients negligibly (<6% in all comorbidities) mediated the association between higher age and outcome.Conclusions: Age is the main determinant of COVID-19 related in-hospital mortality, with negligible mediation effect of pre-existing comorbidities.Trial registration: CAPACITY-COVID (NCT04325412).
The blood metabolome incorporates cues from the environment as well as the host’s genetic background, potentially offering a holistic view of an individual’s health status. We have compiled a vast resource of 1H-NMR metabolomics and phenotypic data encompassing over 25,000 samples derived from 26 community and hospital-based cohorts. Using this resource, we constructed a metabolomics-based age predictor (metaboAge) to calculate an individual’s biological age. Exploration in independent cohorts demonstrates that being judged older by one’s metabolome, as compared to one’s chronological age, confers an increased risk on future cardiovascular disease, mortality and functionality in older individuals. A web-based tool for calculating metaboAge (metaboage.researchlumc.nl) allows easy incorporation in other epidemiological studies. Access to data can be requested at bbmri.nl/samples-images-data. In summary, we present a vast resource of metabolomics data and illustrate its merit by constructing a metabolomics-based score for biological age that captures aspects of current and future cardio-metabolic health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.