Background
The Kynurenine Pathway (KP) of tryptophan degradation and glutamate toxicity is implicated in several neurological disorders, including depression. The therapeutic potential of mesenchymal stromal cells (MSC), owing to their well documented phagocytosis-driven mechanism of immunomodulation and neuroprotection, has been tested in many neurological disorders. However, their potential to influence KP and the glutamatergic system has not yet been investigated. Hence, this study sought to investigate the effect of HUCPVC, a rich and potent source of MSC, on Lipopolysaccharide (LPS)-activated KP metabolites, KP enzymes, and key components of glutamate neurotransmission.
Methods
The immunomodulatory effect of peripherally administered HUCPVC on the expression profile of kynurenine pathway metabolites and enzymes was assessed in the plasma and brain of mice treated with LPS using LCMS and QPCR. An assessment of the glutamatergic system, including selected receptors, transporters and related proteins was also conducted by QPCR, immunohistochemistry and Western blot.
Results
HUCPVC were found to modulate LPS-induced activation of KP enzymes and metabolites in the brain associated with neurotoxicity. Moreover, the reduced expression of the glutamatergic components due to LPS was also found to be significantly improved by HUCPVC.
Conclusions
The immunomodulatory properties of HUCPVC appear to confer neuroprotection, at least in part, through their ability to modulate the KP in the brain. This KP modulation enhances neuroprotective regulators and downregulates neurotoxic consequences, including glutamate neurotoxicity, which is associated with neuroinflammation and depressive behavior.
Background
The Kynurenine Pathway (KP) of tryptophan degradation and glutamate toxicity is implicated in several neurological disorders, including depression. Although mesenchymal stromal cells (MSC)-mediated immunomodulation and neuroprotection have been studied in many of these disorders, their potential to influence KP and the glutamatergic system has not yet been investigated. Hence, this study sought to investigate the effect of HUCPVC, a rich and potent source of MSC, on Lipopolysaccharide (LPS)-activated KP metabolites, KP enzymes, and key components of glutamate neurotransmission.
Methods
The immunomodulatory effect of peripherally administered HUCPVC on the expression profile of kynurenine pathway enzymes and metabolites was assessed in the plasma and brain of mice treated with LPS. An assessment of the glutamatergic system, including selected receptors, transporters and proteins was also conducted.
Results
HUCPVC were found to modulate LPS-induced activation of KP enzymes and metabolites in the brain associated with neurotoxicity. Moreover, the reduced expression of the glutamatergic components due to LPS was also found to be significantly improved by HUCPVC.
Conclusions
The immunomodulatory properties of HUCPVC appear to confer neuroprotection, at least in part, through their ability to modulate the KP in the brain. This KP modulation enhances neuroprotective regulators and downregulates neurotoxic consequences, including glutamate neurotoxicity, which is associated with neuroinflammation and depressive behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.