The generalized log-logistic distribution is especially useful for modelling survival data with variable hazard rate shapes because it extends the log-logistic distribution by adding an extra parameter to the classical distribution, resulting in greater flexibility in analyzing and modelling various data types. We derive the fundamental mathematical and statistical properties of the proposed distribution in this paper. Many well-known lifetime special submodels are included in the proposed distribution, including the Weibull, log-logistic, exponential, and Burr XII distributions. The maximum likelihood method was used to estimate the unknown parameters of the proposed distribution, and a Monte Carlo simulation study was run to assess the estimators’ performance. This distribution is significant because it can model both monotone and nonmonotone hazard rate functions, which are quite common in survival and reliability data analysis. Furthermore, the proposed distribution’s flexibility and usefulness are demonstrated in a real-world data set and compared to its submodels, the Weibull, log-logistic, and Burr XII distributions, as well as other three-parameter parametric survival distributions, such as the exponentiated Weibull distribution, the three-parameter log-normal distribution, the three-parameter (or the shifted) log-logistic distribution, the three-parameter gamma distribution, and an exponentiated Weibull distribution. The proposed distribution is plausible, according to the goodness-of-fit, log-likelihood, and information criterion values. Finally, for the data set, Bayesian inference and Gibb’s sampling performance are used to compute the approximate Bayes estimates as well as the highest posterior density credible intervals, and the convergence diagnostic techniques based on Markov chain Monte Carlo techniques were used.
In applied statistics, the coefficient of variation is widely used. However, inference concerning the coefficient of variation of non-normal distributions are rarely reported. In this article, a simulation-based Bayesian approach is adopted to estimate the coefficient of variation (CV ) under progressive firstfailure censored data from Gompertz distribution. The sampling schemes such as, first-failure censoring, progressive type II censoring, type II censoring and complete sample can be obtained as special cases of the progressive first-failure censored scheme. The simulation-based approach will give us a point estimate as well as the empirical sampling distribution of CV . The joint prior density as a product of conditional gamma density and inverted gamma density for the unknown Gompertz parameters are considered. In addition, the results of maximum likelihood and parametric bootstrap techniques are also proposed. An analysis of a real life data set is presented for illustrative purposes. Results from simulation studies assessing the performance of our proposed method are included.
In medical studies or in reliability analysis, it is quite common that the failure of any individual or any item may be attributable to more than one cause. So in this paper, we consider the competing risks model with very general censoring scheme, namely progressive first-failure censored
scheme under the Gompertz life time distribution. The results in each of first-failure censoring, progressive Type II censoring, Type II censoring and complete sample are a special cases. We provide different methods for the analysis of the model under the assumption of independent causes
of failure and Gompertz distribution lifetimes. The maximum likelihood estimators (MLE’s) of the different parameters as well as approximate confidence intervals are presented. Bayesian estimation using MCMC method under the joint prior density as a product of a conditional gamma density
and inverted gamma density for unknown Gompertz parameters are presented. The analysis of a real data set to assess the performance of all these estimators, confidence intervals are developed using asymptotic distributions and Bayesian credible intervals for the parameters. The different methods
are compared through a simulation study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.