Interaction of Zn2؉ with the two-electron-reduced enzyme was directly detected in anaerobic stopped-flow experiments. Lipoamide dehydrogenase also catalyzes NADH oxidation by oxygen, yielding hydrogen peroxide as the major product and superoxide radical as a minor product. Zn 2؉ accelerates the oxidase reaction up to 5-fold with an activation constant of 0.09 ؎ 0.02 M. Activation is a consequence of Zn 2؉ binding to the reduced catalytic thiols, which prevents delocalization of the reducing equivalents between catalytic disulfide and FAD. A kinetic scheme that satisfactorily describes the observed effects has been developed and applied to determine a number of enzyme kinetic parameters in the oxidase reaction. The distinct effects of Zn 2؉ on different LADH activities represent a novel example of a reversible switch in enzyme specificity that is modulated by metal ion binding. These results suggest that Zn 2؉ can interfere with mitochondrial antioxidant production and may also stimulate production of reactive oxygen species by a novel mechanism.
The kinetics of reduction of indigocarmine-dye-oxidized Fe protein of nitrogenase from Klebsiella pneumoniae (Kp2ox) by sodium dithionite in the presence and absence of MgADP were studied by stopped-flow spectrophotometry at 23 degrees C and at pH 7.4. Highly co-operative binding of 2MgADP (composite K greater than 4 X 10(10) M-2) to Kp2ox induced a rapid conformation change which caused the redox-active 4Fe-4S centre to be reduced by SO2-.(formed by the predissociation of dithionite ion) with k = 3 X 10(6) M-1.s-1. This rate constant is at least 30 times lower than that for the reduction of free Kp2ox (k greater than 10(8) M-1.s-1). Two mechanisms have been considered and limits obtained for the rate constants for MgADP binding/dissociation and a protein conformation change. Both mechanisms give rate constants (e.g. MgADP binding 3 X 10(5) less than k less than 3 X 10(6) M-1.s-1 and protein conformation change 6 X 10(2) less than k less than 6 X 10(3) s-1) that are similar to those reported for creatine kinase (EC 2.7.3.2). The kinetics also show that in the catalytic cycle of nitrogenase with sodium dithionite as reductant replacement of 2MgADP by 2MgATP occurs on reduced and not oxidized Kp2. Although the Kp2ox was reduced stoichiometrically by SO2-. and bound two equivalents of MgADP with complete conversion into the less-reactive conformation, it was only 45% active with respect to its ability to effect MgATP-dependent electron transfer to the MoFe protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.