a b s t r a c tStimulated by recent THz measurements of the methanol spectrum in one of our laboratories, undertaken in support of NASA programs related to the Herschel Space Observatory (HSO) and the Atacama Large Millimeter Array (ALMA), we have carried out a global analysis of available microwave and high-resolution infrared data for the first three torsional states (m t = 0, 1, 2), and for J values up to 30. This global fit of approximately 5600 frequency measurements and 19 000 Fourier transform far infrared (FTFIR) wavenumber measurements to 119 parameters reaches the estimated experimental measurement accuracy for the FTFIR transitions, and about twice the estimated experimental measurement accuracy for the microwave, submillimeter-wave, and terahertz transitions. The present fit is essentially a continuation of our earlier work, but we have greatly expanded our previous data set and have added a large number of new torsion-rotation interaction terms to the Hamiltonian in our previously used computer program. The results, together with a number of calculated (but unmeasured) transitions, including their line strength, estimated uncertainty, and lower state energy, are made available in the supplementary material as a database formatted to be useful for astronomical searches. Some discussion of several open spectroscopic problems, e.g., (i) an improved notation for the numerous parameters in the torsion-rotation Hamiltonian, (ii) possible causes of the failure to fit frequency measurements to the estimated measurement uncertainty, and (iii) pitfalls to be avoided when intercomparing apparently identical parameters from the internal axis method and the rho axis method are also given.
We have measured and assigned more than 800 new far-infrared absorption lines and 12 new microwave absorption lines of the ammonia dimer. Our data are analyzed in combination with all previously measured far-infrared and microwave spectra for this cluster. The vibration-rotation-tunneling (VRT) states of the ammonia dimer connected by electricdipole-allowed transitions are separated into three groups that correspond to different combinations of monomer rotational states: A +A states (states formed from the combination of two ammonia monomers in A states), A +E states, and E+ E states. We present complete experimentally determined energy-level diagrams for the K,=O and K,= 1 levels of each group in the ground vibrational state of this complex. From these, we deduce that the appropriate molecular symmetry group for the ammonia dimer is G,# This, in turn, implies that three kinds of tunneling motions are feasible for the ammonia dimer: interchange of the "donor" and "acceptor" roles of the monomers, internal rotation of the monomers about their C, symmetry axes, and quite unexpectedly, "umbrella" inversion tunneling. In the K,= 0 A + E and E+ E states, the measured umbrella inversion tunneling splittings range from 1.1 to 3.3 GHz. In K,= 1, these inversion splittings between two sets of E+E states are 48 and 9 MHz, while all others are completely quenched. Another surprise, in light of previous analyses of tunneling in the ammonia dimer, is our discovery that the interchange tunneling splittings are large. In the A+A and E+E states, they are 16.1 and 19.3 cm-', respectively. In the A + E states, the measured 20.5 cm-' splitting can result from a difference in "donor" and "acceptor" internal rotation frequencies that is increased by interchange tunneling. We rule out the possibility that the upper state of the observed far-infrared subbands is the very-low-frequency out-of-plane intermolecular vibration predicted in several theoretical studies [C. E. Dykstra and L. Andrews, J. Chem. Phys. 92, 6043 (1990) Chem. Phys. 97, 4750 (1992>], make it unlikely that the structure proposed by Nelson et al. for the ammonia dimer is the equilibrium structure.
We present the results of an infrared spectroscopic survey of 23 late-M dwarfs with the NIRSPEC echelle spectrometer on the Keck II telescope. Using telluric lines for wavelength calibration, we are able to achieve measurement precisions of down to 45 m s −1 for our late-M dwarfs over a one-to four-year long baseline. Our sample contains two stars with radial velocity (RV) variations of >1000 m s −1. While we require more measurements to determine whether these RV variations are due to unseen planetary or stellar companions or are the result of starspots known to plague the surface of M dwarfs, we can place upper limits of <40 M J sin i on the masses of any companions around those two M dwarfs with RV variations of <160 m s −1 at orbital periods of 10-100 days. We have also measured the rotational velocities for all the stars in our late-M dwarf sample and offer our multiorder, high-resolution spectra over 2.0-2.4 μm to the atmospheric modeling community to better understand the atmospheres of late-M dwarfs.
Fabry-Perot resonators have tremendous potential to enhance the sensitivity of spectroscopic systems at terahertz (THz) frequencies. Increasing sensitivity will be of benefit in compensating for the relatively low power of current high resolution continuous wave THz radiation techniques, and to fully express the potential of THz spectroscopy as source power increases. Improved sensitivities, and thus scanning speeds, will allow detailed studies of the complex vibration-rotation-tunneling dynamics that large molecules show at THz wavelengths, and will be especially important in studying more elusive, transient species such as those present in planetary atmospheres and the interstellar medium. Coupling radiation into the cavity presents unique challenges at THz frequencies, however, meaning that the cavity configurations common in neighboring frequency domains cannot simply be translated. Instead, novel constructions are needed. Here we present a resonator design in which wire-grid polarizers serve as the input and output coupling mirrors. Using this configuration, Q-factors of a few times 10 5 are achieved near 0.3 THz. To aid future investigations, the parameter space that limits the quality of the cavity is explored and paths to improved performance highlighted. Lastly, the performance of polarizer cavity-based Fourier transform (FT) THz spectrometers is discussed, in particular those design optimizations that should allow for the construction of THz instrumentation that rivals and eventually surpasses the sensitivities achieved with modern FT-microwave cavity spectrometers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.