The common use of by-pass diodes, to contain power generation losses and to avoid "hotspot" phenomena in presence of short-term, repetitive and critical partial shadings on a PVfield, is experimentally investigated, for demonstrating that bypass diodes are not the optimum choice. Active distributed maximum power point trackers (DMPPTs) can offer a better solution; nevertheless, they are based on complex circuitries and control algorithms, with a reduced reliability and additional power losses. In this contest, the aim of the paper is to present and discuss experimental results obtained by testing a homemade PVgenerator prototype in which only a wisely designed and distributed mini-storage based on commercial rechargeable batteries is introduced, to be employed as a "passive" DMPPT, without any active DC/DC converter. The prototype is also experimented to make a comparative performance analysis (i) without bypass diodes, (ii) with bypass diodes and (iii) by introducing our mini-battery-pack, under identical partial shadings, artificially caused and characterized by different degrees of criticality. Experiments demonstrate that wisely designed distributed mini-battery-packs, based on commercial rechargeable batteries, can effectively operate as a passive DMPPT able to cope with short-term critical partial shadings for avoiding "hot-spot" issues and for guaranteeing a significant improvement of the net generated power together with the conventional storage task.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.