The type strain of Yarrowia lipolytica and 38 strains identified as Yarrowia lipolytica, four strains of Candida deformans, including the type and two subcultures of the type, two strains of Candida galli and six unidentified strains that resembled Y. lipolytica were examined by PCR fingerprints using primers M13 and (GAC)5. The same strains, together with four strains of the recently introduced Candida yakushimensis nom. inval., were sequenced for the D1/D2 domain of the 26S rRNA gene and parts of the ITS domain and also studied for their physiological properties. Of the strains identified previously as Y. lipolytica, CBS 2076 had the same fingerprint as the type of C. deformans and strain CBS 4855 was distinct from all other strains. The six strains that resembled Y. lipolytica were separated into two groups distinct from any of the other clades. A total of six groups obtained by fingerprint and sequence data were evaluated by performing DNA reassociation reactions. Mating experiments among the 35 strains of Y. lipolytica
sensu stricto showed that 15 strains represented one mating type and 16 strains represented the opposite mating type, while four strains were self-sporulating. Teleomorph states were not produced by C. deformans, C. galli or any of the unidentified isolates. However, positive mating reactions were rarely observed in crosses among C. galli and some strains of Y. lipolytica and C. deformans. Consequently, sharing the same mating type system, C. deformans and C. galli could be considered anamorphs of unnamed Yarrowia species. Results from PCR fingerprints, sequencing and mating studies support the grouping of the studied strains into Y. lipolytica, C. galli, C. deformans, C. yakushimensis nom. inval. and three novel species in the Yarrowia clade: Candida oslonensis sp. nov. (type strain CBS 10146T =NRRL Y-48252T; Mycobank number MB 510769), Candida alimentaria sp. nov. (type strain CBS 10151T =NRRL Y-48253T; Mycobank number MB 510770) and Candida hollandica sp. nov. (type strain CBS 4855T =NRRL Y-48254T; Mycobank number MB 510771).
The type species of the genus Debaryomyces, Debaryomyces hansenii, is a highly heterogeneous species. It has been isolated from a large diversity of natural sources including fruit, air, water, soil, but most frequently from processed food products. The species delineation of this yeast species urgently needs clarification. The heterogeneity in taxonomic characteristics has resulted in the description of varieties linked to D. hansenii. The aim of this study was to re-examine and classify D. hansenii using a polyphasic approach. A total of 65 D.
hansenii isolates were examined, 57 representing the variety hansenii and nine the variety fabryi. The selection of strains for DNA reassociation and phylogenetic analysis was based on polymerase chain reaction mediated fingerprints using four mini- and microsatellite-specific primers. The discriminating power of growth at 35 °C and 37 °C was re-examined and ascospore production was observed. DNA reassociations and phylogenetic analyses were performed on selected isolates from each of the clusters obtained from the DNA fingerprint analyses. The data indicated the presence of three distinct species within the D. hansenii group, which were represented by type strains of former species and that are proposed to be reinstated: D. hansenii (CBS 767T = MUCL 49680T), D. fabryi (CBS 789T = MUCL 49731T) and D. subglobosus (CBS 792T = MUCL 49732T).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.