We investigate the quantum walk on the line when decoherences are introduced either through simultaneous measurements of the chirality and particle position, or as a result of broken links. Both mechanisms drive the system to a classical diffusive behavior. In the case of measurements, we show that the diffusion coefficient is proportional to the variance of the initially localized quantum random walker just before the first measurement. When links between neighboring sites are randomly broken with probability p per unit time, the evolution becomes decoherent after a characteristic time that scales as 1/p. The fact that the quadratic increase of the variance is eventually lost even for very small frequencies of disrupting events, suggests that the implementation of a quantum walk on a real physical system may be severely limited by thermal noise and lattice imperfections.
We analyze in detail the discrete-time quantum walk on the line by separating the quantum evolution equation into Markovian and interference terms. As a result of this separation, it is possible to show analytically that the quadratic increase in the variance of the quantum walker's position with time is a direct consequence of the coherence of the quantum evolution. If the evolution is decoherent, as in the classical case, the variance is shown to increase linearly with time, as expected. Furthermore we show that this system has an evolution operator analogous to that of a resonant quantum kicked rotor. As this rotator may be described through a quantum computational algorithm, one may employ this algorithm to describe the time evolution of the quantum walker.
The conditional shift in the evolution operator of a quantum walk generates entanglement between the coin and position degrees of freedom. This entanglement can be quantified by the von Neumann entropy of the reduced density operator (entropy of entanglement). In the long time limit, it converges to a well defined value which depends on the initial state. Exact expressions for the asymptotic (long-time) entanglement are obtained for (i) localized initial conditions and (ii) initial conditions in the position subspace spanned by | ± 1 .
The mixing time of a discrete-time quantum walk on the hypercube is considered. The mean probability distribution of a Markov chain on a hypercube is known to mix to a uniform distribution in time O(n log n). We show that the mean probability distribution of a discrete-time quantum walk on a hypercube mixes to a (generally non-uniform) distribution π(x) in time O(n) and the stationary distribution is determined by the initial state of the walk. An explicit expression for π(x) is derived for the particular case of a symmetric walk. These results are consistent with those obtained previously for a continuous-time quantum walk. The effect of decoherence due to randomly breaking links between connected sites in the hypercube is also considered. We find that the probability distribution mixes to the uniform distribution as expected. However, the mixing time has a minimum at a critical decoherence rate p ≈ 0.1. A similar effect was previously reported for the QW on the N -cycle with decoherence from repeated measurements of position. A controlled amount of decoherence helps to obtain-and preserve-a uniform distribution over the 2 n sites of the hypercube in the shortest possible time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.