While nanocatalysis is a very active field, there have been very few studies in the size/shape-dependent catalytic properties of transition metals from a thermodynamical approach. Transition metal nanoparticles are very attractive due their high surface to volume ratio and their high surface energy. In particular, in this paper we focus on the Pt-Pd catalyst which is an important system in catalysis. The melting temperature, melting enthalpy, and catalytic activation energy were found to decrease with size. The face centered cubic crystal structure of platinum and palladium has been considered in the model. The shape stability has been discussed. The phase diagram of different polyhedral shapes has been plotted and the surface segregation has been considered. The model predicts a nanoparticle core rich in Pt surrounded by a layer enriched in Pd. The Pd segregation at the surface strongly modifies the catalytic activation energy compared to the non-segregated nanoparticle. The predictions were compared with the available experimental data in the literature.PACS65.80-g; 82.60.Qr; 64.75.Jk
Systems with typical dimensions in the range of 1–100 nm are in an intermediate state between solid and molecular. Such systems are characterized by the fact that the ratio of the number of surface to volume atoms is not small. This is known to lead to size and shape effects on their cohesive properties. In this work, the phase diagram of nanowires was studied in the framework of classical thermodynamics. The roles of the size, shape, and surface tensions were emphasized. The melting temperatures of nanowires of 21 elements were evaluated theoretically. In the case of binary systems, it was shown that the experimental or theoretical knowledge of the size-dependent phase diagrams of a given binary system allows the evaluation of the one of nanowires. The procedure is described in this paper.
We report a theoretical investigation, at the nanoscale, free of any adjustable parameters, concerning the size, shape, composition, and segregation effects on the melting temperature and energy bandgap of In 1-x Ga x As. The corresponding nanophase diagram is established. From it, the composition and segregation effects on the energy bandgap of the ternary semiconducting nanoalloy are deduced. The information obtained in this study can be used to tune the thermo-optical properties of In 1-x Ga x As in nano-optoelectronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.