The realization of scalable systems for quantum information processing and networking is of utmost importance to the quantum information community. However, building such systems is difficult because of challenges in achieving all the necessary functionalities on a unified platform while maintaining stringent performance requirements of the individual elements. A promising approach that addresses this challenge is based on the consolidation of experimental and theoretical capabilities in quantum physics and integrated photonics. Integrated quantum photonic devices allow efficient control and read-out of quantum information while being scalable and cost effective. Here, the authors review recent developments in solid-state single photon emitters coupled with various integrated photonic structures, which form a critical component of future scalable quantum devices. Their work contributes to the further development and realization of quantum networking protocols and quantum logic on a scalable and fabrication-friendly platform.
A theoretical study of two-dimensional photonic crystals made of anisotropic material is presented. Detailed computation principles including a treatment of the TE and TM polarizations are given for a photonic crystal made of either uniaxially or biaxially anisotropic materials. These two polarizations can be decoupled as long as any one of the principal axes of the anisotropic material is perpendicular to the periodic plane of the photonic crystal. The symmetry loss due to the anisotropy of the material and the variation of the Brillouin zones relative to the tensor orientations are also analyzed. Furthermore, the symmetry properties of the two-dimensional photonic band structure are studied, and the resulting effect on the photonic bandgap and the dispersion properties of photonic crystal are analyzed as a function of the orientation of the anisotropic material.
Light emission from the color centers in diamonds can be significantly enhanced by their interaction with optical microcavities. In the conventional chip-based hybrid approach, nanodiamonds are placed directly on the surface of microcavity chips created using fabrication-matured material platforms. However, the achievable enhancement due to the Purcell effect is limited because of the evanescent interaction between the electrical field of the cavity and the nanodiamond. Here, we propose and statistically analyze a diamond in a nanopocket structure as a new route to achieve a high enhancement of light emission from the color center in the nanodiamond, placed in an optical microcavity. We demonstrate that by creating a nanopocket within the photonic crystal L3 cavity and placing the nanodiamond in, a significant and a robust control over the local density of states can be obtained. The antinodes of the electric field relocate to the nanosized air gaps within the nanopocket, between the nanodiamond and the microcavity. This creates an elevated and uniform electric field across the nanodiamond that is less sensitive to perturbations in the shape and orientation of the nanodiamond. Using a silicon nitride photonic crystal L3 cavity and aiming at silicon-vacancy and nitrogen-vacancy color centers in diamond, we performed a statistical analysis of light emission, assuming random positions of color centers and dipole moment orientations. We showed that in cavities with experimentally feasible quality factors, the diamond in the nanopocket structure produces Purcell factor distributions with mean and median that are tenfold larger compared to what can be achieved when the diamond is on the surface of the microcavity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.