A precision measurement by the Alpha Magnetic Spectrometer on the International Space Station of the positron fraction in primary cosmic rays in the energy range from 0.5 to 350 GeV based on 6.8×106 positron and electron events is presented. The very accurate data show that the positron fraction is steadily increasing from 10 to ∼250 GeV, but, from 20 to 250 GeV, the slope decreases by an order of magnitude. The positron fraction spectrum shows no fine structure, and the positron to electron ratio shows no observable anisotropy. Together, these features show the existence of new physical phenomena
▪ Abstract The main obstacles to greater commercialization of polymer electrolyte fuel cells are mostly related to the low-proton conductivity at low-relative humidity of the known ionomeric membranes, to their high methanol permeability and poor mechanical properties above ∼130°C. A possible solution for these problems has been found in the development of composite membranes, where particles of suitable fillers are dispersed in the ionomer matrix. The preparation methods for obtaining composite membranes are described, and recent work dealing with composite ionomeric membranes containing silica, heteropolyacids, layered metal phosphates, and phosphonates is reviewed. Finally, new strategies for the preparation of nano-composite membranes and for the filling of porous polymeric membranes with highly conductive zirconium phosphonates are described. The expected influence of size and orientation of these particles on membrane properties, such as conductivity and permeability to methanol, is also discussed.
Proton conductors, catalysts, and solar energy storage materials are some of the potential uses of various crystalline acid salts of tetravalent metals. Results obtained on a large number of metal(IV) phosphates and phosphonates are reviewed, the α‐ and β‐structured layered metal(IV) phosphates and the organic derivatives of zirconium phosphates being emphasized. Methods of preparation and the structures determined—especially layered and pillared—are described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.