Cytochrome P450 enzymes are heme containing monooxygenases that mainly react through oxygen atom transfer. Specific features of substrate and oxidant that determine the reaction rate constant for oxygen atom transfer are still poorly understood and, therefore, we did a systematic gas-phase study on reactions by iron(IV)-oxo porphyrin cation radical structures with arenes. We present here the first results obtained by using Fourier transform-ion cyclotron resonance mass spectrometry and provide rate constants and product distributions for the assayed reactions. Product distributions and kinetic isotope effect studies implicate a rate determining aromatic hydroxylation reaction that correlates with the ionization energy of the substrate and no evidence of aliphatic hydroxylation products is observed. To further understand the details of the reaction mechanism, a computational study on a model complex was performed. These studies confirm the experimental hypothesis of dominant aromatic over aliphatic hydroxylation and show that the lack of an axial ligand affects the aliphatic pathways. Moreover, a two parabola valence bond model is used to rationalize the rate constant and identify key properties of the oxidant and substrate that drive the reaction. In particular, the work shows that aromatic hydroxylation rates correlate with the ionization energy of the substrate as well as with the electron affinity of the oxidant.
Nitrogenases catalyse nitrogen fixation to ammonia on a multinuclear Fe‐Mo centre, but their mechanism and particularly the order of proton and electron transfer processes that happen during the catalytic cycle is still unresolved. Recently, a unique biomimetic mononuclear iron model was developed using tris(phosphine)borate (TPB) ligands that was shown to convert N2 into NH3. Herein, we present a computational study on the [(TPB)FeN2]− complex and describe its conversion into ammonia through the addition of electrons and protons. In particular, we tested the consecutive proton transfer on only the distal nitrogen atom or alternated protonation of the distal/proximal nitrogen. It is found that the lowest energy pathway is consecutive addition of three protons to the same site, which forms ammonia and an iron‐nitrido complex. In addition, the proton transfer step of complexes with the metal in various oxidation and spin states were tested and show that the pK a values of biomimetic mononuclear nitrogenase intermediates vary little with iron oxidation states. As such, the model gives several possible NH3 formation pathways depending on the order of electron/proton transfer, and all should be physically accessible in the natural system. These results may have implications for enzymatic nitrogenases and give insight into the catalytic properties of mononuclear iron centres.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.