In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field
Tissue degradation by the matrix metalloproteinase gelatinase A is pivotal to inflammation and metastases. Recognizing the catalytic importance of substrate-binding exosites outside the catalytic domain, we screened for extracellular substrates using the gelatinase A hemopexin domain as bait in the yeast two-hybrid system. Monocyte chemoattractant protein-3 (MCP-3) was identified as a physiological substrate of gelatinase A. Cleaved MCP-3 binds to CC-chemokine receptors-1, -2, and -3, but no longer induces calcium fluxes or promotes chemotaxis, and instead acts as a general chemokine antagonist that dampens inflammation. This suggests that matrix metalloproteinases are both effectors and regulators of the inflammatory response.
Chemokines provide directional cues for leukocyte migration and activation that are essential for normal leukocytic trafficking and for host responses during processes such as inflammation, infection, and cancer. Recently we reported that matrix metalloproteinases (MMPs) modulate the activity of the CC chemokine monocyte chemoattractant protein-3 by selective proteolysis to release the N-terminal tetrapeptide. Here we report the N-terminal processing, also at position 4-5, of the CXC chemokines stromal cell-derived factor (SDF)-1alpha and beta by MMP-2 (gelatinase A). Robustness of the MMP family for chemokine cleavage was revealed from identical cleavage site specificity of MMPs 1, 3, 9, 13, and 14 (MT1-MMP) toward SDF-1; selectivity was indicated by absence of cleavage by MMPs 7 and 8. Efficient cleavage of SDF-1alpha by MMP-2 is the result of a strong interaction with the MMP hemopexin C domain at an exosite that overlaps the monocyte chemoattractant protein-3 binding site. The association of SDF-1alpha with different glycosaminoglycans did not inhibit cleavage. MMP cleavage of SDF-1alpha resulted in loss of binding to its cognate receptor CXCR-4. This was reflected in a loss of chemoattractant activity for CD34(+) hematopoietic progenitor stem cells and pre-B cells, and unlike full-length SDF-1alpha, the MMP-cleaved chemokine was unable to block CXCR-4-dependent human immunodeficiency virus-1 infection of CD4(+) cells. These data suggest that MMPs may be important regulatory proteases in attenuating SDF-1 function and point to a deep convergence of two important networks, chemokines and MMPs, to regulate leukocytic activity in vivo.
Reactive oxygen species (ROS) have been implicated as a signal for general autophagy. Both mitochondrial-produced and exogenous ROS induce autophagosome formation. However, it is unclear whether ROS are required for the selective autophagic degradation of mitochondria, a process called mitophagy. Recent work using carbonyl cyanide m-chlorophenylhydrazone (CCCP), a mitochondrial-uncoupling reagent, has been shown to induce mitophagy. However, CCCP treatment may not be biologically relevant since it causes the depolarization of the entire mitochondrial network. Since mitochondria are the main ROS production sites in mammalian cells, we propose that short bursts of ROS produced within mitochondria may be involved in the signaling for mitophagy. To test this hypothesis, we induced an acute burst of ROS within mitochondria using a mitochondrial-targeted photosensitizer, mitochondrial KillerRed (mtKR). Using mtKR, we increased ROS levels in the mitochondrial matrix, which resulted in the loss of membrane potential and the subsequent activation of PARK2-dependent mitophagy. Importantly, we showed that overexpression of the mitochondrial antioxidant protein, superoxide dismutase-2, can squelch mtKR-induced mitophagy, demonstrating that mitochondrial ROS are responsible for mitophagy activation. Using this assay, we examined the impact of mitochondrial morphology on mitophagy. It was shown recently that elongated mitochondria are more resistant to mitophagy through unknown mechanisms. Here, we show that elongated mitochondria are more resistant to ROS-induced damage and mitophagy compared with fragmented mitochondria, suggesting that mitochondrial morphology has an important role in regulating ROS and mitophagy. Together, our results suggest that ROS-induced mitochondrial damage may be an important upstream activator of mitophagy.
Rhomboid proteins are intramembrane serine proteases that activate epidermal growth factor receptor (EGFR) signalling in Drosophila. Rhomboids are conserved throughout evolution, and even in eukaryotes their existence in species with no EGFRs implies that they must have additional roles. Here we report that Saccharomyces cerevisiae has two rhomboids, which we have named Rbd1p and Rbd2p. RBD1 deletion results in a respiratory defect; consistent with this, Rbd1p is localized in the inner mitochondrial membrane and mutant cells have disrupted mitochondria. We have identified two substrates of Rbd1p: cytochrome c peroxidase (Ccp1p); and a dynamin-like GTPase (Mgm1p), which is involved in mitochondrial membrane fusion. Rbd1p mutants are indistinguishable from Mgm1p mutants, indicating that Mgm1p is a key substrate of Rbd1p and explaining the rbd1Delta mitochondrial phenotype. Our data indicate that mitochondrial membrane remodelling is regulated by cleavage of Mgm1p and show that intramembrane proteolysis by rhomboids controls cellular processes other than signalling. In addition, mitochondrial rhomboids are conserved throughout eukaryotes and the mammalian homologue, PARL, rescues the yeast mutant, suggesting that these proteins represent a functionally conserved subclass of rhomboid proteases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.