K. HADYŃSKA-KLȨK et al. PHYSICAL REVIEW C 97, 024326 (2018) A Coulomb-excitation experiment to study electromagnetic properties of 42 Ca was performed using a 170-MeV calcium beam from the TANDEM XPU facility at INFN Laboratori Nazionali di Legnaro. γ rays from excited states in 42 Ca were measured with the AGATA spectrometer. The magnitudes and relative signs of ten E2matrix elements coupling six low-lying states in 42 Ca, including the diagonal E2 matrix elements of 2 + 1 and 2 + 2 states, were determined using the least-squares code GOSIA. The obtained set of reduced E2 matrix elements was analyzed using the quadrupole sum rule method and yielded overall quadrupole deformation for 0 + 1,2 and 2 + 1,2 states, as well as triaxiality for 0 + 1,2 states, establishing the coexistence of a weakly deformed ground-state band and highly deformed slightly triaxial sideband in 42 Ca. The experimental results were compared with the state-of-the-art large-scale shell-model and beyond-mean-field calculations, which reproduce well the general picture of shape coexistence in 42 Ca.
Lifetimes of the excited states of a pair of positive-parity I = 2 bands of 107 Cd have been measured by using the Doppler-shift attenuation method. The obtained B(E2) transition rates significantly decrease with increasing spin, a behavior typical of antimagnetic rotation (AMR). The observed results, interpreted by the semiclassical model (SCM) calculations, confirm these bands to be AMR bands resulting from the coupling of a pair of highg 9/2 proton holes to aligned g 7/2 (h 11/2 ) 2 neutron particles. This is the first evidence for two AMR bands in a single nucleus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.