We present a detailed analysis of HARPS-N radial velocity observations of K2-100, a young and active star in the Praesepe cluster, which hosts a transiting planet with a period of 1.7 days. We model the activity-induced radial velocity variations of the host star with a multi-dimensional Gaussian Process framework and detect a planetary signal of 10.6 ± 3.0 m s −1 which matches the transit ephemeris, and translates to a planet mass of 21.8 ± 6.2 M ⊕ . We perform a suite of validation tests to confirm that our detected signal is genuine. This is the first mass measurement for a transiting planet in a young open cluster. The relatively low density of the planet, 2.04 +0.66 −0.61 g cm −3 , implies that K2-100b retains a significant volatile envelope. We estimate that the planet is losing its atmosphere at a rate of 10 11 − 10 12 g s −1 due to the high level of radiation it receives from its host star.
Transiting exoplanet parameter estimation from time-series photometry and Doppler spectroscopy is fundamental to study planets' internal structures and compositions.Here we present the code pyaneti, a powerful and user-friendly software suite to perform multi-planet radial velocity and transit data fitting. The code uses a Bayesian approach combined with an MCMC sampling to estimate the parameters of planetary systems. We combine the numerical efficiency of FORTRAN, the versatility of PYTHON, and the parallelization of OpenMP to make pyaneti a fast and easy to use code. The package is freely available at https://github.com/oscaribv/pyaneti.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.