Abstract:In the field of agriculture, plantation begins with ploughing the land and sowing seeds. The old traditional method plough attached to an OX and tractors needs human involvement to carry the process. The driving force behind this work is to reduce the human interference in the field of agriculture and to make it cost effective. In this work, apart of the land is taken into consideration and the robot introduced localizes the path and can navigate itself without human action. For ploughing, this robot is provided with tentacles attached with saw blades. The sowing mechanism initiates with long toothed gears actuated with motors. The complete body is divided into two parts the tail part acts as a container for seeds. The successor holds on all the electronics used for automating and actuation. The locomotion is provided with wheels covered under conveyor belts. Gears at the back of the robot rotate in equal speed with respect to each other with the saw blades. For each rotation every tooth on gear will take seeds and will drop them on field. Camera at the front end tracks the path for every fixed distance and at the minimum distance it takes the path preprogrammed. Introduction:
The human hand is one of the most complex structures of the human body, having the fingers that possess one of the highest numbers of nerve endings in the body. The hand, with its nerve endings has the capacity for the richest tactile feedback with excellent positioning capabilities.The existing hand control methods used in controlling smart prostheses have many drawbacks and need improvements. This paper proposes a new technique of controlling slippage, which is one of the major drawbacks for a prosthetic hand. A fuzzy logic control algorithm with multiple rules is designed along with a modified tactile sensory system for feedback. The slippage control acts as a complementary control system to the EMG or EEG based position control.A 5 Degrees of Freedom (DOF) hand was used which has one micro servo motor as actuator for each finger. A force sensing resistor is modified and used as a slippage sensor. First we use a reference EMG signal for getting the 5 DOF hand to grip an object, using position control. Then a slip is induced and we see the slippage control strategies work to hold the grasp. The results based on the plain sensory system and the modified system are discussed. Finally the advantages of the entire slippage control system are highlighted.
The human hand along with its fingers possess one of the highest numbers of nerve endings in the human body. It thus has the capacity for the richest tactile feedback for positioning capabilities. This article shares a new technique of controlling slippage. The sensing system used for the detection of slippage is a modified force sensing resistor (FSR®). The control system is a fuzzy logic control algorithm with multiple rules that is designed to be processed on a mobile handheld computing platform and integrated/working alongside a traditional Electromyography (EMG) or Electroencephalography (EEG) based control system used for determining position of the fingers. A 5 Degrees of Freedom (DOF) hand, was used to test the slippage control strategy in real time. First a reference EMG signal was used for getting the 5 DOF hand to grasp an object, using position control. Then a slip was introduced to see the slippage control strategy at work. The results based on the plain tactile sensory feedback and the modified sensory feedback are discussed.
The proposed robot aims to serve as a personal assistant for visually impaired people in obstacle avoidance, in identifying the person (known or unknown) with whom they are interacting with and in navigating. The robot has a special feature in truly locating the subject’s location using GPS. The novel feature of this robot is to identify people with whom the subject interacts. Facial detection and identification in real-time has been a challenge and achieved with accurate image processing using viola jones and SURF algorithms. An obstacle avoidance design has been implanted in the system with many sensors to guide in the correct path. Hence, the robot is a fusion of providing the best of the comfort and safety with minimal cost.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.