We report the first results of the LISA Pathfinder in-flight experiment. The results demonstrate that two free-falling reference test masses, such as those needed for a space-based gravitational wave observatory like LISA, can be put in free fall with a relative acceleration noise with a square root of the power spectral density of 5.2±0.1 fm s^{-2}/sqrt[Hz], or (0.54±0.01)×10^{-15} g/sqrt[Hz], with g the standard gravity, for frequencies between 0.7 and 20 mHz. This value is lower than the LISA Pathfinder requirement by more than a factor 5 and within a factor 1.25 of the requirement for the LISA mission, and is compatible with Brownian noise from viscous damping due to the residual gas surrounding the test masses. Above 60 mHz the acceleration noise is dominated by interferometer displacement readout noise at a level of (34.8±0.3) fm/sqrt[Hz], about 2 orders of magnitude better than requirements. At f≤0.5 mHz we observe a low-frequency tail that stays below 12 fm s^{-2}/sqrt[Hz] down to 0.1 mHz. This performance would allow for a space-based gravitational wave observatory with a sensitivity close to what was originally foreseen for LISA.
The masses of 31 neutron-rich nuclei in the range A = 29-47 have been measured. The precision of 19 masses has been significantly improved and 12 masses were measured for the first time. The neutron-rich Cl, S, and P isotopes are seen to exhibit a change in shell structure around N = 28. Comparison with shell model and relativistic mean field calculations demonstrate that the observed effects arise from deformed prolate ground state configurations associated with shape coexistence. Evidence for shape coexistence is provided by the observation of an isomer in 43S.
Isotopic effects in the fragmentation of excited target residues following collisions of 12C on (112,124)Sn at incident energies of 300 and 600 MeV per nucleon were studied with the INDRA 4pi detector. The measured yield ratios for light particles and fragments with atomic number Z < or = 5 obey the exponential law of isotopic scaling. The deduced scaling parameters decrease strongly with increasing centrality to values smaller than 50% of those obtained for the peripheral event groups. Symmetry-term coefficients, deduced from these data within the statistical description of isotopic scaling, are near gamma = 25 MeV for peripheral and gamma < 15 MeV for central collisions.
The properties of fragments and light charged particles emitted in multifragmentation of single sources formed in central 36 A.MeV Gd+U collisions are reviewed. Most of the products are isotropically distributed in the reaction c.m. Fragment kinetic energies reveal the onset of radial collective energy. A bulk effect is experimentally evidenced from the similarity of the charge distribution with that from the lighter 32 A.MeV Xe+Sn system. Spinodal decomposition of finite nuclear matter exhibits the same property in simulated central collisions for the two systems, and appears therefore as a possible mechanism at the origin of multifragmentation in this incident energy domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.