This study was designed to investigate the use of commercial adsorbent materials for the removal of nitrogen compounds from a vacuum gas oil obtained from an industrial atmospheric distillation unit. Two types of adsorbents were tested: a clay developed specifically for the removal of nitrogen compounds from middle distillates (jet fuel and diesel); and a silica used in a variety of industries. Kinetic and thermodynamic equilibrium experiments were conducted at three temperatures: 80, 100, and 120 °C. The variation in the concentration of nitrogen and aromatic compounds was monitored throughout the kinetic adsorption and thermodynamic equilibrium experiments. When an adsorbent/gas oil mass ratio of 0.75 was used, the clay removed around 70 % of the basic nitrogen compounds from the gas oil, while the silica removed 80 % of the same compounds, which are the ones that effectively hamper catalytic cracking. The silica also removed 14.2 % of the aromatic compounds, while the clay only removed 4.1 %. This study shows that it is possible to treat a viscous hydrocarbon feed using an adsorption process to remove nitrogen compounds without the need to dilute the feed. Using a fluidized bed advanced cracking evaluation (ACE) unit, which simulates a fluid catalytic cracking unit on a bench scale, the gas oil treated with silica produced 3 % more liquid petroleum gas (LPG) and 4 % more gasoline, while the gas oil treated with clay produced 2 % more LPG and 3 % more gasoline than the untreated gas oil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.