After three decades, the efficacy of empathy in the clinical setting remains undocumented. Recently, concerns have been raised that the concept may be inappropriate and even harmful to the nurse-patient relationship. An analysis of the concept indicates that empathy consists of moral, emotive, cognitive and behavioral components. By tracing the integration of this concept into nursing, we suggest that empathy was uncritically adopted from psychology and is actually a poor fit for the clinical reality of nursing practice. Other communication strategies presently devalued, such as sympathy, pity, consolation, compassion and commiseration, need to be reexamined and may be more appropriate than empathy during certain phases of the illness experience. Directions for future research are suggested.
We report the fabrication of enthalpy arrays and their use to detect molecular interactions, including protein-ligand binding, enzymatic turnover, and mitochondrial respiration. Enthalpy arrays provide a universal assay methodology with no need for specific assay development such as fluorescent labeling or immobilization of reagents, which can adversely affect the interaction. Microscale technology enables the fabrication of 96-detector enthalpy arrays on large substrates. The reduction in scale results in large decreases in both the sample quantity and the measurement time compared with conventional microcalorimetry. We demonstrate the utility of the enthalpy arrays by showing measurements for two proteinligand binding interactions (RNase A ؉ cytidine 2 -monophosphate and streptavidin ؉ biotin), phosphorylation of glucose by hexokinase, and respiration of mitochondria in the presence of 2,4-dinitrophenol uncoupler.U nderstanding the thermodynamics of molecular interactions is central to biology and chemistry. Although a number of methods are available, calorimetry is the only universal assay for the complete thermodynamic characterization of these interactions. Under favorable circumstances, the enthalpy, entropy, free energy, and stoichiometry of a reaction can be determined (1, 2). In addition, calorimetry does not require any labeling or immobilization of the reactants and hence offers a completely generic method for characterizing the interactions. Indeed, titration calorimetry is widely used in both drug discovery and basic science, but its use is severely constrained to a small number of very high-value measurements by the large sample requirements and long measurement times. No currently available methods for calorimetric measurements lend themselves to modern approaches in which large libraries of compounds, ranging from small molecules in combinatorial libraries to proteins and other macromolecules, are studied.Here we report a low-cost nanocalorimetry detector that can be used as a high-throughput assay tool to detect enthalpies of binding interactions, enzymatic turnover, and other chemical reactions. The detectors are made by using microscale fabrication technology, resulting in a nearly 3 orders of magnitude reduction in both the sample quantity and the measurement time over conventional microcalorimetry. The fabrication technology is low-cost and enables fabrication of 96-detector arrays, which we call enthalpy arrays, on large substrates. Accordingly, the technology will scale to high-volume production of disposable arrays. This increase in performance and reduction in cost promises to enable calorimetry to be used to investigate a substantial number of samples. Nanocalorimetry in the enthalpy array format has valuable applications in proteomics for protein interaction and protein chemistry research and in high-throughput screening and lead optimization for drug discovery. Materials and MethodsDevice Fabrication. The schematic cross section of a nanocalorimeter detector is shown in Fig. 1a. The d...
In this paper, a model describing nurses' responses to patients who are suffering is presented. The nurse's level of engagement with the patient is affected by whether the caregiver is focused on him-/herself or on the sufferer (i.e. embodied with the patient) and whether the caregiver is responding reflexively or with a learned response. Four types of communication patterns are identified: engaged responses (first-level) are used in a connected relationship; when the nurse responses reflexively and is focused on him-/herself, the response is reflected; when the caregiver is patient-focused, a learned response is labelled a professional response; and a self-focused, learned response is labelled detached. Examples of each type of response are provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.