The long-standing mainstay of support for C. T. R. Wilson's global circuit hypothesis is the similarity between the diurnal variation of thunderstorm days in universal time and the Carnegie curve of electrical potential gradient. This rough agreement has sustained the widespread view that thunderstorms are the ''batteries'' for the global electrical circuit. This study utilizes 10 years of Tropical Rainfall Measuring Mission (TRMM) observations to quantify the global occurrence of thunderstorms with much better accuracy and to validate the comparison by F. J. W. Whipple 80 years ago. The results support Wilson's original ideas that both thunderstorms and electrified shower clouds contribute to the DC global circuit by virtue of negative charge carried downward by precipitation. First, the precipitation features (PFs) are defined by grouping the pixels with rain using 10 years of TRMM observations. Thunderstorms are identified from these PFs with lightning flashes observed by the Lightning Imaging Sensor. PFs without lightning flashes but with a 30-dBZ radar echotop temperature lower than 2108C over land and 2178C over ocean are selected as possibly electrified shower clouds. The universal diurnal variation of rainfall, the raining area from the thunderstorms, and possibly electrified shower clouds in different seasons are derived and compared with the diurnal variations of the electric field observed at Vostok, Antarctica. The result shows a substantially better match from the updated diurnal variations of the thunderstorm area to the Carnegie curve than Whipple showed. However, to fully understand and quantify the amount of negative charge carried downward by precipitation in electrified storms, more observations of precipitation current in different types of electrified shower clouds are required.
[1] This paper presents the first Antarctic meteor radar temperature estimates. These temperatures have been derived from meteor diffusion coefficients using two techniques: pressure model and temperature gradient model. The temperatures are compared with a temperature model derived using colocated OH spectrometer measurements and Northern Hemisphere rocket observations. Pressure model temperatures derived using rocketderived pressures show good agreement with the temperature model, while those derived using Mass Spectrometer and Incoherent Scatter (MSIS) and CIRA model pressures show good agreement in winter but poor agreement in summer. This confirms previous studies suggesting the unreliability of high-latitude CIRA pressures. The temperature gradient model temperatures show good agreement with the temperature model but show larger fluctuations than the pressure model temperatures. Meteor temperature estimates made during the Southern delta-Aquarids meteor shower are shown to be biased, suggesting that care should be taken in applying meteor temperature estimation during meteor showers. On the basis of our results we recommend the use of the pressure model technique at all sites, subject to determination of an appropriate pressure model.
The assimilative mapping of ionospheric electrodynamics technique has been used to derive the large-scale high-latitude ionospheric convection patterns simultaneously in both northern and southern hemispheres during the period of January 27-29, 1992. When the interplanetary magnetic field (IMF) B• component is negative, the convection patterns in the southern hemisphere are basically the mirror images of those in the northern hemisphere. The total cross-polar-cap potential drops in the two hemispheres are similar. When B• is positive and IB•I > B•, the convection configurations are mainly determined by B• and they may appear as normal "two-cell" patterns in both hemispheres much as one would expect under southward IMF conditions. However, there is a significant difference in the cross-polar-cap potential drop between the two hemispheres, with the potential drop in the southern (summer) hemisphere over 50% larger than that in the northern (winter) hemisphere. As the ratio of decreases (less thn one), the convection configuration in the two hemispheres may be significantly different, with reverse convection in the southern hemisphere and weak but disturbed convection in the northern hemisphere. By comparing the convection patterns with the corresponding spectrograms of precipitating particles, we interpret the convection patterns in terms of the concept of merging cells, lobe cells, and viscous cells. Estimates of the "merging cell" potential drops, that is, the potential ascribed to the opening of the dayside field lines, are usually comparable between the two hemispheres, as they should be. The "lobe cell" provides a potential between 8.5 and 26 kV and can differ greatly between hemispheres, as predicted. Lobe cells can be significant even for southward IMF, if IBl > IBI. To estimate the potential drop of the "viscous cells," we assume that the low-latitude boundary layer is on closed field lines. We find that this potential drop varies from case to case, with a typical value of 10 kV. If the source of these cells is truly a viscous interaction at the flank of the magnetopause, the process is likely spatially and temporally varying rather than steady state. New Zealand. 6491 6492 LU ET AL.: HIGH-LATITUDE IONOSPHERIC CONVECTION PATTERN Pedersen and Hall conductance models are obtained by combining the auroral conductance model of Fuller-Rowell and Evans [1987] with an empirical model of conductance produced by solar extreme ultraviolet radiation based on Chatanika radar observations. The statistical electric potential model is based on Millstone Hill radar observations [Foster et al., 1986]. Both conductance and potential models are parameterized by the hemispheric power index (HPI) [Foster e! al., 1986]. A very important feature of AMIE is its ability to give quantitative information about the uncertainty in the resultant patterns, so that features mapped reliably can LU ET AL.' HIGH-LATITUDE
[1] Pressure variations at 11 Antarctic sites and 7 Arctic sites have been examined and show significant correlations with a daily proxy for the output of the meteorological generators of the global atmospheric circuit. This proxy is derived from vertical electric field measurements made at Vostok on the Antarctic ice plateau. Taken with the finding of proportionate pressure variations correlated with atmospheric circuit changes owing to coupling with the interplanetary electric field, particularly for the Antarctic plateau (magnetic latitude > 83°) region, this provides experimental evidence that a small portion of the surface pressure variations are due to the influence of the global atmospheric circuit. The response to the interplanetary electric field is an example of Sun-weather coupling. To evaluate it, the daily average interplanetary magnetic field (IMF) east-west component (B y ) is used as a proxy for the north-south interplanetary electric field, which produces opposite ionospheric potential changes in the northern and southern polar caps. The correlation with IMF B y for the pressure variations for the Antarctic sites for a solar cycle (1995)(1996)(1997)(1998)(1999)(2000)(2001)(2002)(2003)(2004)(2005) is small (0.9% average covariance for the magnetic latitude > 83°sites) but significant (99.7% confidence level). The Arctic stations show a negative regression between pressure variations and IMF B y , a relationship expected if the linkage process operates by the atmospheric circuit, but it is only found when the interval is restricted to the peak of the sunspot cycle (1999)(2000)(2001)(2002).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.