In initial attempts to define the molecular events responsible for the latent state of herpes simplex virus, in situ hybridization was utilized to search for virally encoded RNA transcripts in latently infected sensory neurons. The use of cloned probes representing the entire viral genome indicated that transcripts encoded within terminal repeats were present. When the alpha genes encoding ICP-0, ICP-4, and ICP-27 and the gamma 1 gene encoding VP-5 were employed, only RNA transcripts hybridizing to the ICP-0 probe were detected. In latently infected cells, the ICP-0--related transcripts were localized principally in the nucleus; this was not the case in acutely (productively) infected neurons or in neurons probed for RNA transcripts coding for actin. In Northern blotting experiments, an RNA of 2.6 kilobases was detected with the ICP-0 probe. When single-stranded DNAs from the ICP-0 region were used as probes, RNA from the strand complementary to that encoding ICP-0 messenger RNA (mRNA) was the major species detected. This RNA species may play a significant role in maintaining the latent infection.
The herpes simplex virus type 1 latency-associated transcript (LAT) is expressed as a major species in latently infected mouse neurons. Previous sequence analysis revealed no obvious promoter elements near the 5' end of the LAT, but a TATA box and other potential promoter elements were found 700 base pairs upstream. A recombinant virus in which the rabbit beta-globin gene was inserted immediately downstream of the TATA box expressed globin mRNA and did not express the LAT. A second recombinant virus, in which this TATA box was removed, was negative for LAT expression in a latent infection. The location of the LAT promoter suggested that RNA upstream of the LAT was synthesized and degraded during latent-phase transcription. Low levels of this RNA were observed by in situ hybridization. In other experiments, RNA from a productive infection was used to detect a transcript extending from the LAT promoter to a polyadenylation signal approximately 8.5 kilobases downstream. These data suggest that the LAT may be processed from a larger transcription unit which begins distal to the TATA box 700 base pairs upstream of the LAT and extends to a polyadenylation signal almost 5 kilobases downstream of the 3' end of the LAT.
RNA transfer (Northern) blot analysis was used to perform the physical characterization of the transcript expressed in murine sensory nerve ganglia latently infected with herpes simplex virus type 1. Most of this latency-associated transcript (LAT) was isolated in the poly(A)fraction from ganglia. A smaller RNA species was also detected at less than 10% the abundance of the major one. LAT was not detected with probes from DNA outside the limits of the larger species. In situ hybridization data correlated well with Northern blot analysis; however, low levels of hybridization were seen with probes immediately outside the region of viral DNA giving positive Northern blot signals. Sl nuclease and primer extension mapping were used to locate the 5' end of the LAT 510 bases to the left of a Kpnl site at 0.783 map units. The 3' end of the major latency-associated species was mapped to just within a 310-base-pair SmaI fragment located 660 to 970 base pairs to the right of the Sall site at 0.790 map units. These data were correlated with an analysis of the sequence of the DNA encoding this transcript and its possible function in the latent phase of infection.
The herpes simplex virus type 1 latency-associated transcript (LAT) is expressed as a major species 2,100 to 2,200 bases in length and a less abundant one ca. 730 bases shorter in latently infected mouse and rabbit neurons. RNA blot hybridization experiments using 20to 22-base synthetic oligonucleotides and mung bean nuclease protection assays have demonstrated that the smaller LAT species is colinear with the larger one, except for a 730-base intron. On the basis of Northern blot analysis, the spliced species which comprises as much as 50% of the total LAT in latent infections of mice with several strains of herpes simplex virus type 1 and latent infections of rabbits with either the McKrae or the KOS(M) strains of virus is not present in the acute phase of infection. Further and rather surprisingly, in mice latently infected with the KOS(M) strain of virus, the spliced LAT species is considerably less abundant. This suggests that both the strain of virus and the animal in which the latent infection occurs are important in either the processing or stability of spliced LAT. Finally, an exhaustive series of experiments failed to provide convincing evidence that a unique, poly(A)+ species of LAT exists in the latent phase of infection.
RNA from the region of the genome encoding herpes simplex virus type 1 latency-associated transcripts (LATs) expressed during lytic infection yields low abundances of both polyadenylated and nonpolyadenylated forms. As has been previously shown for latent infection (A
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.