A search forν µ →ν e oscillations was conducted by the Liquid Scintillator Neutrino Detector at the Los Alamos Neutron Science Center usingν µ from µ + decay at rest. A total excess of 87.9 ± 22.4 ± 6.0 events consistent withν e p → e + n scattering was observed above the expected background. This excess corresponds to an oscillation probability of (0.264 ± 0.067 ± 0.045)%, which is consistent with an earlier analysis. In conjunction with other known limits on neutrino oscillations, the LSND data suggest that neutrino oscillations occur in the 0.2 − 10 eV 2 /c 4 ∆m 2 range, indicating a neutrino mass greater than 0.4 eV/c 2 .2
The Booster Neutrino Experiment (MiniBooNE) searches for ν µ → ν e oscillations using the O(1 GeV) neutrino beam produced by the Booster synchrotron at the Fermi National Accelerator Laboratory (FNAL). The Booster delivers protons with 8 GeV kinetic energy (8.89 GeV/c momentum) to a beryllium target, producing neutrinos from the decay of secondary particles in the beam line. We describe the Monte Carlo simulation methods used to estimate the flux of neutrinos from the beamline incident on the MiniBooNE detector for both polarities of the focusing horn. The simulation uses the Geant4 framework for propagating particles, accounting for electromagnetic processes and hadronic interactions in the beamline materials, as well as the decay of particles.The absolute double differential cross sections of pion and kaon production in the simulation have been tuned to match external measurements, as have the hadronic cross sections for nucleons and pions. The statistical precision of the flux predictions is enhanced through reweighting and resampling techniques. Systematic errors in the flux estimation have been determined by varying parameters within their uncertainties, accounting for correlations where appropriate.
This paper explores the use of L/E oscillation probability distributions to compare experimental measurements and to evaluate oscillation models. In this case, L is the distance of neutrino travel and E is a measure of the interacting neutrino's energy. While comparisons using allowed and excluded regions for oscillation model parameters are likely the only rigorous method for these comparisons, the L/E distributions are shown to give qualitative information on the agreement of an experiment's data with a simple two-neutrino oscillation model. In more detail, this paper also outlines how the L/E distributions can be best calculated and used for model comparisons. Specifically, the paper presents the L/E data points for the final MiniBooNE data samples and, in the Appendix, explains and corrects the mistaken analysis published by the ICARUS collaboration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.