Bubbles of gas (usually methane) in marine sediments affect the load-bearing properties of the seabed and act as a natural reservoir of “greenhouse” gas. This paper describes a simple method which can be applied to historical and future subbottom profiles to infer bubble void fractions and map the vertical and horizontal distributions of gassy sediments, and the associated sound speed perturbations, even with single-frequency insonification. It operates by identifying horizontal features in the geology and interpreting any perceived change of depth in these as a bubble-mediated change in sound speed.
Geoacoustic inversion requires a generic knowledge of the frequency-dependence of compressional wave properties in marine sediments, the nature of which is still under debate. The use of in situ probes to measure sediment acoustic properties introduces a number of experimental difficulties that must be overcome. To this end, a series of wellconstrained in situ acoustic transmission experiments were undertaken on inter-tidal sediments using a purpose-built in situ device, the Sediment Probing Acoustic Detection Equipment. Compressional wave velocity and attenuation coefficient were measured from 16 to 100 kHz in medium to fine sands and coarse to medium silts. Spreading losses, which were adjusted for sediment type, were incorporated into the data processing, as were a thorough error analysis and an examination of the repeatability of both the acoustic wave emitted by the source and the coupling between probes and sediment. Over the experimental frequency range and source-to-receiver separations of 0.99 -8.1 m, resulting velocities are accurate to between + 1.1 to + 4.5 % in sands and less than + 1.9 % in silts, while attenuation coefficients are accurate to between + 1 to + 7 dB·m -1 in both sands and silts. Preliminary results indicate no velocity dispersion and an attenuation coefficient which is proportional to frequency. KEYWORDSSediment, in situ, compressional wave velocity, compressional wave attenuation 3
To advance the present understanding of the frequency dependence of compressional wave velocity and attenuation in marine sediments a series of well-constrained in situ acoustic transmission experiments (16 to 100kHz) were performed on intertidal sediments. The processing techniques incorporated in situ spreading losses, sediment to transducer coupling and thorough error analyses. Significant variations in velocity and attenuation were observed over scales of tens of meters within the same sediment type. Velocity was generally nondispersive in sands, while highly variable silt velocities prevented any meaningful dispersion estimates from being determined. The attenuation coefficient was proportional to frequency for 75% of the experimental sites. The measured compressional wave properties were compared to predictions from the Grain-Shearing model. For the sandy sites, the phase velocities predicted by the Grain Shearing model exceed those measured, while predicted phase velocities agreed with measured group velocities at specific locations for the silty sites. For both silts and sands predicted dispersions are comparable to the intrinsic errors in group velocity and hence undetectable. The attenuation coefficients predicted by the Grain Shearing model adequately describe the measured attenuation coefficients, within the observed variability.
The need to predict acoustic propagation through marine sediments that contain gas bubbles has become increasingly important for civil engineering and climate studies. There are relatively few in situ acoustic wave propagation studies of muddy intertidal sediments, in which bubbles of biogenic gas (generally methane, a potent greenhouse gas) are commonly found. We used a single experimental rig to conduct two in situ intertidal acoustical experiments to improve understanding of acoustic remote sensing of gassy sediments, eventually including gas bubble size distributions. In the first experiment, we measured sediment sound speed and attenuation between four aligned hydrophones for a quasi-plane wave propagating along the array. The second experiment involved a focused insonified sediment volume created by two transducers emitting coincident sound beams at different frequencies that generated bubblemediated acoustic signals at combination frequencies. The results from sediment core analyses, and comparison of in situ acoustic velocity and attenuation values with those of water-saturated sediments, together provide ample evidence for the presence of in situ gas bubbles in the insonified volumes of sediments. These datasets are suitable for linear and non-linear inversion studies that estimate in situ greenhouse gas bubble populations, needed for future acoustical remote sensing applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.