Objective: The rationale of the current research work was to formulate and evaluate fast-dissolving tablets of doxazosin mesylate with minimum disintegration time and improved dissolution efficiency using solid dispersion method.Methods: Solid dispersions of doxazosin mesylate and polyethylene glycol 8000 in different ratios were prepared using the kneading method. The prepared solid dispersions were subjected to drug interaction and dissolution studies to select the effective solid dispersion for the formulation of fast-dissolving tablets. Fast dissolving tablets containing drug-polyethylene glycol 8000 solid dispersion (1:3) were prepared using various superdisintegrants such as crospovidone, croscarmellose sodium, mixture and coprocessed crospovidone and croscarmellose sodium in concentration range of 2% and 5% by direct compression technique. The prepared formulations (F1-F16) were evaluated for post compression parameters; hardness, thickness, friability, wetting time, disintegration time, and in-vitro drug release.Results: Drug doxazosin mesylate showed enhanced aqueous solubility of 13.3µg/ml in the presence of polyethylene glycol 8000. Differential scanning calorimetery and Fourier transform infrared spectroscopy studies confirmed no interaction between drug and polyethylene glycol 8000and, drug-polyethylene glycol 8000 solid dispersion showed cumulative drug release of 44.48% in 60 min. Formulated FDT of drugpolyethylene glycol 8000 solid dispersion, containing coprocessed mixture of crospovidone and croscarmellose sodium (5%) exhibited disintegration time of 14.5s with percentage cumulative release of 92.46% in 60 min. Conclusion:The work reasonably concludes that for the formulated doxazosin mesylate-fast dissolving tablets, disintegration time was effectively reduced by the presence of coprocessed mixture of crospovidone and croscarmellose sodium and dissolution efficiency was improved by preparation of solid dispersion with polyethylene glycol 8000.
Objective: Lipid-based formulations have gained much attention, particularly on self-emulsifying drug delivery systems (SEDDS), to improve the oral bioavailability of lipophilic drugs. In the present study, an attempt was made to develop and evaluate prototype SEDDS of poorly soluble antiviral BCS class IV drug etravirine.Methods: Various oils, surfactants and co-surfactants were screened for their suitability in the formulation of SEDDS. Based on the screening, gelucire 44/14, as the oil, labrasol as a surfactant and transcutol HP as the co-surfactant were selected. SEDDS with drug etravirine was formulated and evaluated for emulsifying ability, dilution potential and microscopic properties. The emulsion area for each of the combination of oil and surfactant co-surfactant mixture (Smix) was determined by the construction of pseudo-ternary phase diagrams.Results: The optimized formulation with oil (gelucire 44/14) and Smix (labrasol: transcutol HP, 6:1) in a ratio of 2:8 exhibited a rapid emulsification rate and a good polydispersibility index of 0.103±0.012 indicating uniformity of the formed droplets. The size of the droplets was determined by zetasizer and was found to be in 200 nm range. The drug release from the final formulation after 2hr was found to be 41.15%±0.5 compared to 19.3%±3.8 of pure drug indicating enhanced dissolution profile of the drug.Conclusion: In vitro study illustrated enhanced dissolution rate of formulated prototype SEDDS of BCS class IV drug etravirine for oral delivery.
Objective: The current work was attempted to formulate and evaluate a controlled-release matrix-type ocular inserts containing a combination of brimonidine tartrate and timolol maleate, with a view to sustain the drug release in the cul-de-sac of the eye.Methods: Initially, the infrared studies were done to determine the drug-polymer interactions. Sodium alginate-loaded ocuserts were prepared by solvent casting technique. Varying the concentrations of polymer-sodium alginate, plasticizer-glycerine, and cross-linking agent-calcium chloride by keeping the drug concentration constant, made a total of nine formulations. These formulations were evaluated for its appearance, drug content, weight uniformity, thickness uniformity, percentage moisture loss, percentage moisture absorption, and in vitro release profile of the ocuserts. Finally, accelerated stability studies and the release kinetics were performed on the optimised formulation.Results: It was perceived that polymer, plasticizer, and calcium chloride had a significant influence on the drug release. The data obtained from the formulations showed that formulation-F9 was the optimised formulation, which exhibited better drug release. The release data of the optimised formulation tested on the kinetic models revealed that it exhibited first-order release kinetics. Conclusion:It can be concluded that a natural bioadhesive hydrophilic polymer such as sodium alginate can be used as a film former to load water soluble and hydrophilic drugs like brimonidine tartrate and timolol maleate. Among all formulations, F9 with 400 mg sodium alginate, 2% calcium chloride and 60 mg glycerin were found to be the most suitable insert in terms of appearance, ease of handling, thickness, in vitro drug release and stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.